In [1]:
import numpy as np

In [38]:
# Calculating the covariance matrix or cross correlation
X = np.random.rand(50, 1000)

In [39]:
X.shape, X.dtype


Out[39]:
((50, 1000), dtype('float64'))

In [40]:
# cov = X @ X.T
cov = X.T @ X

In [41]:
cov.shape

import matplotlib.pyplot as mplt

In [42]:
mplt.imshow(cov)
mplt.show()



In [46]:
X.shape, X.mean(axis=0).shape
X_norm = (X - X.mean(axis=0))/ X.std(axis=0)

In [48]:
X_norm.shape
cov = X_norm.T @ X_norm

In [49]:
mplt.imshow(cov)
mplt.show()



In [ ]: