In [1]:
import numpy as np
In [38]:
# Calculating the covariance matrix or cross correlation
X = np.random.rand(50, 1000)
In [39]:
X.shape, X.dtype
Out[39]:
In [40]:
# cov = X @ X.T
cov = X.T @ X
In [41]:
cov.shape
import matplotlib.pyplot as mplt
In [42]:
mplt.imshow(cov)
mplt.show()
In [46]:
X.shape, X.mean(axis=0).shape
X_norm = (X - X.mean(axis=0))/ X.std(axis=0)
In [48]:
X_norm.shape
cov = X_norm.T @ X_norm
In [49]:
mplt.imshow(cov)
mplt.show()
In [ ]: