Iter: 100, train loss: 2.0799, train acc: 0.3125, valid loss: 2.1988, valid acc: 0.2669
Iter: 200, train loss: 2.1253, train acc: 0.3594, valid loss: 2.1337, valid acc: 0.3054
Iter: 300, train loss: 2.1808, train acc: 0.3125, valid loss: 2.0928, valid acc: 0.3177
Iter: 400, train loss: 1.8112, train acc: 0.3125, valid loss: 2.0758, valid acc: 0.3277
Iter: 500, train loss: 1.9613, train acc: 0.3438, valid loss: 2.0609, valid acc: 0.3300
Iter: 600, train loss: 2.0173, train acc: 0.3594, valid loss: 2.0526, valid acc: 0.3331
Iter: 700, train loss: 1.7603, train acc: 0.3594, valid loss: 2.0387, valid acc: 0.3292
Iter: 800, train loss: 1.7857, train acc: 0.3750, valid loss: 2.0305, valid acc: 0.3323
Iter: 900, train loss: 2.1262, train acc: 0.3438, valid loss: 2.0212, valid acc: 0.3438
Iter: 1000, train loss: 1.7583, train acc: 0.4375, valid loss: 2.0149, valid acc: 0.3508
Iter: 1100, train loss: 1.8847, train acc: 0.3594, valid loss: 2.0148, valid acc: 0.3408
Iter: 1200, train loss: 2.2867, train acc: 0.3438, valid loss: 2.0039, valid acc: 0.3431
Iter: 1300, train loss: 1.9065, train acc: 0.3594, valid loss: 2.0051, valid acc: 0.3400
Iter: 1400, train loss: 2.0015, train acc: 0.3750, valid loss: 2.0107, valid acc: 0.3462
Iter: 1500, train loss: 1.7813, train acc: 0.4062, valid loss: 1.9916, valid acc: 0.3569
Iter: 1600, train loss: 1.6513, train acc: 0.5156, valid loss: 1.9890, valid acc: 0.3485
Iter: 1700, train loss: 1.9226, train acc: 0.2969, valid loss: 1.9881, valid acc: 0.3515
Iter: 1800, train loss: 1.9271, train acc: 0.3750, valid loss: 1.9960, valid acc: 0.3585
Iter: 1900, train loss: 1.9561, train acc: 0.3125, valid loss: 1.9849, valid acc: 0.3577
Iter: 2000, train loss: 1.7468, train acc: 0.4062, valid loss: 1.9981, valid acc: 0.3469
Iter: 2100, train loss: 1.7485, train acc: 0.4219, valid loss: 1.9874, valid acc: 0.3438
Iter: 2200, train loss: 1.7120, train acc: 0.4219, valid loss: 1.9907, valid acc: 0.3485
Iter: 2300, train loss: 1.7211, train acc: 0.4844, valid loss: 1.9931, valid acc: 0.3638
Iter: 2400, train loss: 1.8597, train acc: 0.3750, valid loss: 1.9874, valid acc: 0.3492
Iter: 2500, train loss: 1.6148, train acc: 0.4375, valid loss: 1.9869, valid acc: 0.3546
Iter: 2600, train loss: 1.9247, train acc: 0.4062, valid loss: 1.9793, valid acc: 0.3485
Iter: 2700, train loss: 2.1673, train acc: 0.2812, valid loss: 1.9829, valid acc: 0.3531
Iter: 2800, train loss: 1.6941, train acc: 0.4688, valid loss: 1.9825, valid acc: 0.3446
Iter: 2900, train loss: 2.0092, train acc: 0.3594, valid loss: 1.9934, valid acc: 0.3500
Iter: 3000, train loss: 1.9561, train acc: 0.3594, valid loss: 1.9914, valid acc: 0.3492
Iter: 3100, train loss: 1.8354, train acc: 0.3438, valid loss: 1.9808, valid acc: 0.3508
Iter: 3200, train loss: 1.5549, train acc: 0.4844, valid loss: 1.9824, valid acc: 0.3523
Iter: 3300, train loss: 1.5683, train acc: 0.5000, valid loss: 1.9815, valid acc: 0.3669
Iter: 3400, train loss: 1.7742, train acc: 0.4219, valid loss: 1.9765, valid acc: 0.3554
Iter: 3500, train loss: 2.1070, train acc: 0.3594, valid loss: 1.9874, valid acc: 0.3523
Iter: 3600, train loss: 1.8632, train acc: 0.3438, valid loss: 1.9800, valid acc: 0.3469
Iter: 3700, train loss: 1.7199, train acc: 0.5312, valid loss: 1.9746, valid acc: 0.3538
Iter: 3800, train loss: 1.9062, train acc: 0.4062, valid loss: 1.9660, valid acc: 0.3562
Iter: 3900, train loss: 2.0902, train acc: 0.2344, valid loss: 1.9737, valid acc: 0.3515
Iter: 4000, train loss: 1.8538, train acc: 0.4688, valid loss: 1.9742, valid acc: 0.3554
Iter: 4100, train loss: 2.0096, train acc: 0.3750, valid loss: 1.9799, valid acc: 0.3538
Iter: 4200, train loss: 1.9119, train acc: 0.4062, valid loss: 1.9731, valid acc: 0.3685
Iter: 4300, train loss: 1.7919, train acc: 0.4219, valid loss: 1.9649, valid acc: 0.3608
Iter: 4400, train loss: 1.7566, train acc: 0.4219, valid loss: 1.9690, valid acc: 0.3592
Iter: 4500, train loss: 1.8899, train acc: 0.3750, valid loss: 1.9734, valid acc: 0.3569
Iter: 4600, train loss: 1.8028, train acc: 0.4531, valid loss: 1.9863, valid acc: 0.3523
Iter: 4700, train loss: 1.9527, train acc: 0.3281, valid loss: 1.9781, valid acc: 0.3477
Iter: 4800, train loss: 1.8451, train acc: 0.3906, valid loss: 1.9819, valid acc: 0.3569
Iter: 4900, train loss: 1.6553, train acc: 0.4375, valid loss: 1.9925, valid acc: 0.3423
Iter: 5000, train loss: 1.9356, train acc: 0.3125, valid loss: 1.9750, valid acc: 0.3592
Iter: 5100, train loss: 1.5883, train acc: 0.4375, valid loss: 1.9780, valid acc: 0.3508
Iter: 5200, train loss: 1.7207, train acc: 0.4219, valid loss: 1.9682, valid acc: 0.3662
Iter: 5300, train loss: 1.5718, train acc: 0.5312, valid loss: 1.9742, valid acc: 0.3623
Iter: 5400, train loss: 1.7518, train acc: 0.4219, valid loss: 1.9807, valid acc: 0.3400
Iter: 5500, train loss: 1.9872, train acc: 0.3281, valid loss: 1.9834, valid acc: 0.3638
Iter: 5600, train loss: 2.0309, train acc: 0.3594, valid loss: 1.9717, valid acc: 0.3623
Iter: 5700, train loss: 1.9841, train acc: 0.3906, valid loss: 1.9714, valid acc: 0.3600
Iter: 5800, train loss: 1.6851, train acc: 0.4375, valid loss: 1.9723, valid acc: 0.3569
Iter: 5900, train loss: 2.1889, train acc: 0.2500, valid loss: 1.9704, valid acc: 0.3631
Iter: 6000, train loss: 1.7258, train acc: 0.4531, valid loss: 1.9848, valid acc: 0.3446
Iter: 6100, train loss: 1.6587, train acc: 0.4844, valid loss: 1.9714, valid acc: 0.3562
Iter: 6200, train loss: 1.7574, train acc: 0.4531, valid loss: 1.9778, valid acc: 0.3554
Iter: 6300, train loss: 1.8034, train acc: 0.4219, valid loss: 1.9726, valid acc: 0.3631
Iter: 6400, train loss: 1.8055, train acc: 0.3906, valid loss: 1.9836, valid acc: 0.3515
Iter: 6500, train loss: 1.6675, train acc: 0.4844, valid loss: 1.9811, valid acc: 0.3585
Iter: 6600, train loss: 1.8209, train acc: 0.3750, valid loss: 1.9779, valid acc: 0.3608
Iter: 6700, train loss: 1.9507, train acc: 0.3125, valid loss: 1.9808, valid acc: 0.3531
Iter: 6800, train loss: 1.7994, train acc: 0.4062, valid loss: 1.9788, valid acc: 0.3600
Iter: 6900, train loss: 1.7434, train acc: 0.5000, valid loss: 1.9787, valid acc: 0.3662
Iter: 7000, train loss: 1.7142, train acc: 0.4375, valid loss: 1.9818, valid acc: 0.3615
Iter: 7100, train loss: 1.6337, train acc: 0.4688, valid loss: 1.9897, valid acc: 0.3554
Iter: 7200, train loss: 1.7296, train acc: 0.4688, valid loss: 1.9809, valid acc: 0.3646
Iter: 7300, train loss: 1.6340, train acc: 0.4531, valid loss: 1.9768, valid acc: 0.3692
Iter: 7400, train loss: 1.9278, train acc: 0.3125, valid loss: 1.9830, valid acc: 0.3562
Iter: 7500, train loss: 1.8554, train acc: 0.2969, valid loss: 1.9756, valid acc: 0.3762
Iter: 7600, train loss: 1.6829, train acc: 0.3906, valid loss: 1.9732, valid acc: 0.3723
Iter: 7700, train loss: 2.0392, train acc: 0.3125, valid loss: 1.9774, valid acc: 0.3685
Iter: 7800, train loss: 1.6671, train acc: 0.4219, valid loss: 1.9828, valid acc: 0.3631
Iter: 7900, train loss: 1.6543, train acc: 0.3438, valid loss: 1.9695, valid acc: 0.3646
Iter: 8000, train loss: 1.9609, train acc: 0.3750, valid loss: 1.9670, valid acc: 0.3715
Iter: 8100, train loss: 1.4597, train acc: 0.5312, valid loss: 1.9773, valid acc: 0.3562
Iter: 8200, train loss: 1.5098, train acc: 0.4844, valid loss: 1.9702, valid acc: 0.3746
Iter: 8300, train loss: 1.7411, train acc: 0.4219, valid loss: 1.9707, valid acc: 0.3669
Iter: 8400, train loss: 1.7277, train acc: 0.4062, valid loss: 1.9730, valid acc: 0.3646
Iter: 8500, train loss: 1.6993, train acc: 0.3906, valid loss: 1.9950, valid acc: 0.3569
Iter: 8600, train loss: 1.5676, train acc: 0.4688, valid loss: 1.9772, valid acc: 0.3708
Iter: 8700, train loss: 2.0279, train acc: 0.4219, valid loss: 1.9867, valid acc: 0.3654
Iter: 8800, train loss: 1.8400, train acc: 0.4062, valid loss: 1.9894, valid acc: 0.3685
Iter: 8900, train loss: 1.6425, train acc: 0.4688, valid loss: 1.9814, valid acc: 0.3623
Iter: 9000, train loss: 1.6891, train acc: 0.3438, valid loss: 1.9758, valid acc: 0.3723
Iter: 9100, train loss: 1.6954, train acc: 0.4219, valid loss: 1.9882, valid acc: 0.3662
Iter: 9200, train loss: 1.6832, train acc: 0.4219, valid loss: 1.9766, valid acc: 0.3715
Iter: 9300, train loss: 1.6038, train acc: 0.5000, valid loss: 1.9912, valid acc: 0.3585
Iter: 9400, train loss: 1.7378, train acc: 0.3750, valid loss: 1.9940, valid acc: 0.3623
Iter: 9500, train loss: 1.8862, train acc: 0.3906, valid loss: 1.9849, valid acc: 0.3708
Iter: 9600, train loss: 1.6841, train acc: 0.4219, valid loss: 1.9936, valid acc: 0.3669
Iter: 9700, train loss: 1.7176, train acc: 0.3750, valid loss: 1.9882, valid acc: 0.3638
Iter: 9800, train loss: 1.7337, train acc: 0.3906, valid loss: 1.9838, valid acc: 0.3615
Iter: 9900, train loss: 1.5996, train acc: 0.4844, valid loss: 1.9896, valid acc: 0.3669
Iter: 10000, train loss: 1.8500, train acc: 0.3438, valid loss: 1.9904, valid acc: 0.3646