Iter-1, train loss: 33.99246544, valid loss: 343.57881641
Iter-2, train loss: 24.93250646, valid loss: 162.15177421
Iter-3, train loss: 20.96521016, valid loss: 151.60562921
Iter-4, train loss: 22.46883312, valid loss: 272.60795039
Iter-5, train loss: 24.92502377, valid loss: 502.56513895
Iter-6, train loss: 18.70467447, valid loss: 276.46202123
Iter-7, train loss: 18.61615278, valid loss: 340.56802906
Iter-8, train loss: 22.87142505, valid loss: 494.79212649
Iter-9, train loss: 20.28228198, valid loss: 319.64235504
Iter-10, train loss: 21.14364360, valid loss: 411.96446963
Iter-11, train loss: 20.69782646, valid loss: 481.05872486
Iter-12, train loss: 16.48876657, valid loss: 435.05972683
Iter-13, train loss: 17.58755808, valid loss: 358.57065055
Iter-14, train loss: 16.73245514, valid loss: 423.06551270
Iter-15, train loss: 19.37921512, valid loss: 496.29103166
Iter-16, train loss: 19.39028928, valid loss: 384.39553849
Iter-17, train loss: 18.37520346, valid loss: 457.83349693
Iter-18, train loss: 20.53324051, valid loss: 450.81331567
Iter-19, train loss: 17.98369919, valid loss: 497.43905592
Iter-20, train loss: 20.17900253, valid loss: 525.91659895
Iter-21, train loss: 21.09053991, valid loss: 619.20761459
Iter-22, train loss: 21.66098547, valid loss: 610.52310939
Iter-23, train loss: 22.45466883, valid loss: 615.94117688
Iter-24, train loss: 21.13186782, valid loss: 1103.56915479
Iter-25, train loss: 21.44433103, valid loss: 1077.58084262
Iter-26, train loss: 20.39510876, valid loss: 1158.67204873
Iter-27, train loss: 21.06316704, valid loss: 1138.81478485
Iter-28, train loss: 20.28404654, valid loss: 1064.14823472
Iter-29, train loss: 20.07088682, valid loss: 1091.22484579
Iter-30, train loss: 22.66516922, valid loss: 1041.17879462
Iter-31, train loss: 19.27542362, valid loss: 964.85985058
Iter-32, train loss: 22.56799994, valid loss: 977.69966115
Iter-33, train loss: 22.07414145, valid loss: 871.26195933
Iter-34, train loss: 21.87079639, valid loss: 847.73060544
Iter-35, train loss: 20.32552499, valid loss: 760.71271968
Iter-36, train loss: 20.99938467, valid loss: 635.04243276
Iter-37, train loss: 22.63197761, valid loss: 565.64513887
Iter-38, train loss: 21.39185155, valid loss: 514.07817361
Iter-39, train loss: 22.96343140, valid loss: 451.18436911
Iter-40, train loss: 20.23527147, valid loss: 456.01043372
Iter-41, train loss: 20.97791611, valid loss: 396.83794898
Iter-42, train loss: 21.52813316, valid loss: 378.52096346
Iter-43, train loss: 22.22300856, valid loss: 367.45539531
Iter-44, train loss: 25.58585265, valid loss: 357.23350577
Iter-45, train loss: 21.74436954, valid loss: 347.72203541
Iter-46, train loss: 20.00598072, valid loss: 360.66505668
Iter-47, train loss: 22.86109146, valid loss: 388.97527577
Iter-48, train loss: 18.55372771, valid loss: 373.62702748
Iter-49, train loss: 19.20198306, valid loss: 384.36155523
Iter-50, train loss: 21.92628206, valid loss: 386.57422248
Iter-51, train loss: 20.26481479, valid loss: 400.61458814
Iter-52, train loss: 18.54863064, valid loss: 418.07521738
Iter-53, train loss: 19.98798448, valid loss: 397.43696041
Iter-54, train loss: 19.86830990, valid loss: 415.91756078
Iter-55, train loss: 20.52527648, valid loss: 443.33497155
Iter-56, train loss: 20.31582102, valid loss: 421.83264705
Iter-57, train loss: 22.04248235, valid loss: 429.53494143
Iter-58, train loss: 19.27655582, valid loss: 444.43093058
Iter-59, train loss: 21.44390267, valid loss: 445.52771741
Iter-60, train loss: 21.86884236, valid loss: 446.44818141
Iter-61, train loss: 19.40393495, valid loss: 445.94610349
Iter-62, train loss: 19.56642144, valid loss: 446.38704029
Iter-63, train loss: 22.09550283, valid loss: 436.45025041
Iter-64, train loss: 21.84621505, valid loss: 427.62302543
Iter-65, train loss: 20.57571196, valid loss: 427.69051721
Iter-66, train loss: 22.20334177, valid loss: 468.85952366
Iter-67, train loss: 21.84795712, valid loss: 435.94599720
Iter-68, train loss: 19.45875993, valid loss: 440.34055048
Iter-69, train loss: 21.29321416, valid loss: 432.31891207
Iter-70, train loss: 21.13236517, valid loss: 426.32393702
Iter-71, train loss: 23.65718632, valid loss: 439.27777250
Iter-72, train loss: 19.32302623, valid loss: 438.17916739
Iter-73, train loss: 20.84948759, valid loss: 433.39230083
Iter-74, train loss: 18.05228018, valid loss: 439.04244332
Iter-75, train loss: 18.29602485, valid loss: 451.17855631
Iter-76, train loss: 18.67018065, valid loss: 448.10142500
Iter-77, train loss: 21.12343802, valid loss: 444.87826144
Iter-78, train loss: 19.39322322, valid loss: 438.36881964
Iter-79, train loss: 20.15478037, valid loss: 452.61833687
Iter-80, train loss: 22.70071015, valid loss: 440.17235713
Iter-81, train loss: 20.17773645, valid loss: 444.51442393
Iter-82, train loss: 19.41780748, valid loss: 450.74917698
Iter-83, train loss: 20.83789296, valid loss: 444.77696442
Iter-84, train loss: 20.09971365, valid loss: 442.53022988
Iter-85, train loss: 17.47565007, valid loss: 437.09521980
Iter-86, train loss: 18.56978053, valid loss: 430.82252357
Iter-87, train loss: 19.28727833, valid loss: 444.15745529
Iter-88, train loss: 17.67323655, valid loss: 437.62015535
Iter-89, train loss: 21.70153902, valid loss: 439.14370218
Iter-90, train loss: 20.91214825, valid loss: 439.05579672
Iter-91, train loss: 20.17019404, valid loss: 452.93187495
Iter-92, train loss: 20.16404849, valid loss: 479.86966180
Iter-93, train loss: 18.24917156, valid loss: 454.31882655
Iter-94, train loss: 18.10118680, valid loss: 438.18768807
Iter-95, train loss: 18.01448689, valid loss: 431.32549278
Iter-96, train loss: 19.62712962, valid loss: 422.58115523
Iter-97, train loss: 17.87538441, valid loss: 423.92277666
Iter-98, train loss: 16.56781773, valid loss: 408.70265813
Iter-99, train loss: 18.79969851, valid loss: 407.82560812
Iter-100, train loss: 21.02656265, valid loss: 388.75888749
Iter-101, train loss: 21.86493955, valid loss: 361.84769538
Iter-102, train loss: 21.00733083, valid loss: 337.39747723
Iter-103, train loss: 24.86744543, valid loss: 351.77737749
Iter-104, train loss: 19.84052572, valid loss: 401.21070656
Iter-105, train loss: 21.06063493, valid loss: 413.42431687
Iter-106, train loss: 19.41004497, valid loss: 406.72738270
Iter-107, train loss: 21.41527715, valid loss: 414.17833163
Iter-108, train loss: 20.59526641, valid loss: 385.18928638
Iter-109, train loss: 18.76112822, valid loss: 398.17282427
Iter-110, train loss: 22.36491499, valid loss: 395.37423509
Iter-111, train loss: 22.09784670, valid loss: 378.46874612
Iter-112, train loss: 20.77176535, valid loss: 381.65195564
Iter-113, train loss: 21.67162098, valid loss: 396.72303881
Iter-114, train loss: 22.52409609, valid loss: 395.08991909
Iter-115, train loss: 24.52445541, valid loss: 372.74829729
Iter-116, train loss: 24.28746673, valid loss: 374.51947550
Iter-117, train loss: 26.47835801, valid loss: 396.54656433
Iter-118, train loss: 21.70088199, valid loss: 396.05609123
Iter-119, train loss: 23.87005304, valid loss: 397.99251327
Iter-120, train loss: 23.70694385, valid loss: 407.85686370
Iter-121, train loss: 23.38391323, valid loss: 410.88458832
Iter-122, train loss: 22.21810259, valid loss: 415.41336899
Iter-123, train loss: 21.61472134, valid loss: 418.34443823
Iter-124, train loss: 27.56068301, valid loss: 420.66110721
Iter-125, train loss: 26.24004671, valid loss: 432.79395169
Iter-126, train loss: 24.10203826, valid loss: 432.59145989
Iter-127, train loss: 25.98148374, valid loss: 451.94686375
Iter-128, train loss: 20.88233494, valid loss: 469.59690562
Iter-129, train loss: 22.01373613, valid loss: 451.93858257
Iter-130, train loss: 23.70491223, valid loss: 585.84561020
Iter-131, train loss: 23.84373764, valid loss: 561.74304769
Iter-132, train loss: 23.90134445, valid loss: 524.71653503
Iter-133, train loss: 23.76436864, valid loss: 516.09890567
Iter-134, train loss: 23.46021512, valid loss: 511.49716051
Iter-135, train loss: 21.27011576, valid loss: 541.11250172
Iter-136, train loss: 23.61887665, valid loss: 550.22906406
Iter-137, train loss: 23.32886645, valid loss: 553.25030890
Iter-138, train loss: 23.25038958, valid loss: 565.27498680
Iter-139, train loss: 23.05867651, valid loss: 617.40457044
Iter-140, train loss: 22.80261350, valid loss: 603.07939387
Iter-141, train loss: 29.20012195, valid loss: 656.92120458
Iter-142, train loss: 25.03802758, valid loss: 679.09618205
Iter-143, train loss: 23.17203896, valid loss: 657.04692902
Iter-144, train loss: 24.53805286, valid loss: 648.58046564
Iter-145, train loss: 26.07643983, valid loss: 662.60489124
Iter-146, train loss: 23.05974005, valid loss: 681.47905353
Iter-147, train loss: 22.66997092, valid loss: 681.75249199
Iter-148, train loss: 23.49523294, valid loss: 683.82078559
Iter-149, train loss: 24.39352932, valid loss: 691.37359233
Iter-150, train loss: 24.40400012, valid loss: 693.50337465
Iter-151, train loss: 21.79522821, valid loss: 691.84165105
Iter-152, train loss: 24.43391910, valid loss: 691.08636507
Iter-153, train loss: 24.55648110, valid loss: 691.58196914
Iter-154, train loss: 22.92164345, valid loss: 694.87829307
Iter-155, train loss: 22.57249219, valid loss: 697.45938000
Iter-156, train loss: 25.82031236, valid loss: 696.82828648
Iter-157, train loss: 23.82056562, valid loss: 698.54660268
Iter-158, train loss: 25.81879717, valid loss: 692.75627348
Iter-159, train loss: 26.10517195, valid loss: 693.49994228
Iter-160, train loss: 23.53900510, valid loss: 663.20220788
Iter-161, train loss: 26.14923085, valid loss: 682.00301682
Iter-162, train loss: 25.85715133, valid loss: 674.89004975
Iter-163, train loss: 25.51320599, valid loss: 697.73123726
Iter-164, train loss: 22.05894983, valid loss: 692.08993749
Iter-165, train loss: 23.90395923, valid loss: 654.42687994
Iter-166, train loss: 23.22450773, valid loss: 645.18055656
Iter-167, train loss: 24.77702783, valid loss: 602.54202270
Iter-168, train loss: 24.78483621, valid loss: 610.23544074
Iter-169, train loss: 23.82316775, valid loss: 611.53913838
Iter-170, train loss: 26.23427613, valid loss: 617.60954134
Iter-171, train loss: 25.53025430, valid loss: 620.06474556
Iter-172, train loss: 24.39215459, valid loss: 624.32076654
Iter-173, train loss: 26.17162166, valid loss: 627.17722044
Iter-174, train loss: 25.09888735, valid loss: 633.17303200
Iter-175, train loss: 24.60725911, valid loss: 642.29508002
Iter-176, train loss: 24.67810499, valid loss: 643.35183465
Iter-177, train loss: 22.20784668, valid loss: 644.60059609
Iter-178, train loss: 26.05588282, valid loss: 648.25912809
Iter-179, train loss: 25.33745249, valid loss: 653.14754334
Iter-180, train loss: 24.43834844, valid loss: 648.83631881
Iter-181, train loss: 22.63973563, valid loss: 649.64328472
Iter-182, train loss: 23.83569072, valid loss: 705.66482394
Iter-183, train loss: 24.59998618, valid loss: 650.09090068
Iter-184, train loss: 21.82535625, valid loss: 656.29908524
Iter-185, train loss: 24.68546841, valid loss: 654.57607292
Iter-186, train loss: 22.25878482, valid loss: 653.47661030
Iter-187, train loss: 25.96454883, valid loss: 672.30616435
Iter-188, train loss: 21.83476588, valid loss: 719.07451178
Iter-189, train loss: 22.28671255, valid loss: 730.84234793
Iter-190, train loss: 24.97144741, valid loss: 741.99575467
Iter-191, train loss: 24.04666437, valid loss: 733.53295528
Iter-192, train loss: 23.03396029, valid loss: 729.51851428
Iter-193, train loss: 27.69277521, valid loss: 696.78457910
Iter-194, train loss: 23.03221238, valid loss: 681.25753653
Iter-195, train loss: 22.21077153, valid loss: 705.89353931
Iter-196, train loss: 19.98666351, valid loss: 703.73562322
Iter-197, train loss: 22.34258637, valid loss: 673.86576325
Iter-198, train loss: 20.55820430, valid loss: 659.07345322
Iter-199, train loss: 22.01257430, valid loss: 595.55950837
Iter-200, train loss: 20.39325318, valid loss: 608.25320937
Out[49]:
<__main__.GRU at 0x7fde2e4c3198>