In [127]:
'''''''''''''This code shows how to import .mat file (MATLAB format) into dictionary using scipy.io'''''''''''''
'Quotation test'
# '''''''''''''''''''''''''''''''''''''''''''''''''''''''test'''''''''''''''''''''''''''''''''''''''''''''''''''''''
# """"""""""""""""""""""""""""""""""""""""""""""""""""somthing""""""""""""""""""""""""""""""""""""""""""""""""""""

# ''''''''''''''''''''''''''''''''''''''''First we will import the scipy.io''''''''''''''''''''''''''''''''''''''''
import scipy.io
# load .mat file into dictionary x
# x = scipy.io.loadmat('/home/bot/Dropbox/course_work/python_study/fMRI_basic/easymatfile.mat')
x = scipy.io.loadmat('/home/arasdar/data/Training_data/DATA_01_TYPE01.mat')
x.keys(), x.values()
x_sig = x['sig']
x_sig_ = np.array(x_sig)
x_sig_.shape, x_sig.size/6

import matplotlib.pyplot as plt
plt.plot(x_sig[0, :1000], label='ECG')
plt.plot(x_sig[1, :1000], label='PPG-1')
plt.plot(x_sig[2, :1000], label='PPG-2')
# plt.plot(x_sig[3, :1000], label='ACC-X')
# plt.plot(x_sig[4, :1000], label='SCC-Y')
# plt.plot(x_sig[5, :1000], label='ACC-Z')
plt.legend()
plt.show()



In [132]:
# Reading the 2nd file in training set with similar name which is prolly the labels
y = scipy.io.loadmat('/home/arasdar/data/Training_data/DATA_01_TYPE01_BPMtrace.mat')
y.keys(), y.values()
y_BPM0 = y['BPM0']
y_BPM0.size
y = np.array(y_BPM0)
y.shape, y_BPM0.size
plt.plot(y[:50, :], label='BPM0')
plt.show()



In [35]:
for iter in range(100):
    #     format codes for .format in python - keyword for Google
    filename = '/home/arasdar/data/Training_data/DATA_{:02}_TYPE{}.mat'.format(iter, iter)
    #     print('Iter-{} training loss: {:.4f}'.format(iter, loss))
    print(filename)


/home/arasdar/data/Training_data/DATA_00_TYPE0.mat
/home/arasdar/data/Training_data/DATA_01_TYPE1.mat
/home/arasdar/data/Training_data/DATA_02_TYPE2.mat
/home/arasdar/data/Training_data/DATA_03_TYPE3.mat
/home/arasdar/data/Training_data/DATA_04_TYPE4.mat
/home/arasdar/data/Training_data/DATA_05_TYPE5.mat
/home/arasdar/data/Training_data/DATA_06_TYPE6.mat
/home/arasdar/data/Training_data/DATA_07_TYPE7.mat
/home/arasdar/data/Training_data/DATA_08_TYPE8.mat
/home/arasdar/data/Training_data/DATA_09_TYPE9.mat
/home/arasdar/data/Training_data/DATA_10_TYPE10.mat
/home/arasdar/data/Training_data/DATA_11_TYPE11.mat
/home/arasdar/data/Training_data/DATA_12_TYPE12.mat
/home/arasdar/data/Training_data/DATA_13_TYPE13.mat
/home/arasdar/data/Training_data/DATA_14_TYPE14.mat
/home/arasdar/data/Training_data/DATA_15_TYPE15.mat
/home/arasdar/data/Training_data/DATA_16_TYPE16.mat
/home/arasdar/data/Training_data/DATA_17_TYPE17.mat
/home/arasdar/data/Training_data/DATA_18_TYPE18.mat
/home/arasdar/data/Training_data/DATA_19_TYPE19.mat
/home/arasdar/data/Training_data/DATA_20_TYPE20.mat
/home/arasdar/data/Training_data/DATA_21_TYPE21.mat
/home/arasdar/data/Training_data/DATA_22_TYPE22.mat
/home/arasdar/data/Training_data/DATA_23_TYPE23.mat
/home/arasdar/data/Training_data/DATA_24_TYPE24.mat
/home/arasdar/data/Training_data/DATA_25_TYPE25.mat
/home/arasdar/data/Training_data/DATA_26_TYPE26.mat
/home/arasdar/data/Training_data/DATA_27_TYPE27.mat
/home/arasdar/data/Training_data/DATA_28_TYPE28.mat
/home/arasdar/data/Training_data/DATA_29_TYPE29.mat
/home/arasdar/data/Training_data/DATA_30_TYPE30.mat
/home/arasdar/data/Training_data/DATA_31_TYPE31.mat
/home/arasdar/data/Training_data/DATA_32_TYPE32.mat
/home/arasdar/data/Training_data/DATA_33_TYPE33.mat
/home/arasdar/data/Training_data/DATA_34_TYPE34.mat
/home/arasdar/data/Training_data/DATA_35_TYPE35.mat
/home/arasdar/data/Training_data/DATA_36_TYPE36.mat
/home/arasdar/data/Training_data/DATA_37_TYPE37.mat
/home/arasdar/data/Training_data/DATA_38_TYPE38.mat
/home/arasdar/data/Training_data/DATA_39_TYPE39.mat
/home/arasdar/data/Training_data/DATA_40_TYPE40.mat
/home/arasdar/data/Training_data/DATA_41_TYPE41.mat
/home/arasdar/data/Training_data/DATA_42_TYPE42.mat
/home/arasdar/data/Training_data/DATA_43_TYPE43.mat
/home/arasdar/data/Training_data/DATA_44_TYPE44.mat
/home/arasdar/data/Training_data/DATA_45_TYPE45.mat
/home/arasdar/data/Training_data/DATA_46_TYPE46.mat
/home/arasdar/data/Training_data/DATA_47_TYPE47.mat
/home/arasdar/data/Training_data/DATA_48_TYPE48.mat
/home/arasdar/data/Training_data/DATA_49_TYPE49.mat
/home/arasdar/data/Training_data/DATA_50_TYPE50.mat
/home/arasdar/data/Training_data/DATA_51_TYPE51.mat
/home/arasdar/data/Training_data/DATA_52_TYPE52.mat
/home/arasdar/data/Training_data/DATA_53_TYPE53.mat
/home/arasdar/data/Training_data/DATA_54_TYPE54.mat
/home/arasdar/data/Training_data/DATA_55_TYPE55.mat
/home/arasdar/data/Training_data/DATA_56_TYPE56.mat
/home/arasdar/data/Training_data/DATA_57_TYPE57.mat
/home/arasdar/data/Training_data/DATA_58_TYPE58.mat
/home/arasdar/data/Training_data/DATA_59_TYPE59.mat
/home/arasdar/data/Training_data/DATA_60_TYPE60.mat
/home/arasdar/data/Training_data/DATA_61_TYPE61.mat
/home/arasdar/data/Training_data/DATA_62_TYPE62.mat
/home/arasdar/data/Training_data/DATA_63_TYPE63.mat
/home/arasdar/data/Training_data/DATA_64_TYPE64.mat
/home/arasdar/data/Training_data/DATA_65_TYPE65.mat
/home/arasdar/data/Training_data/DATA_66_TYPE66.mat
/home/arasdar/data/Training_data/DATA_67_TYPE67.mat
/home/arasdar/data/Training_data/DATA_68_TYPE68.mat
/home/arasdar/data/Training_data/DATA_69_TYPE69.mat
/home/arasdar/data/Training_data/DATA_70_TYPE70.mat
/home/arasdar/data/Training_data/DATA_71_TYPE71.mat
/home/arasdar/data/Training_data/DATA_72_TYPE72.mat
/home/arasdar/data/Training_data/DATA_73_TYPE73.mat
/home/arasdar/data/Training_data/DATA_74_TYPE74.mat
/home/arasdar/data/Training_data/DATA_75_TYPE75.mat
/home/arasdar/data/Training_data/DATA_76_TYPE76.mat
/home/arasdar/data/Training_data/DATA_77_TYPE77.mat
/home/arasdar/data/Training_data/DATA_78_TYPE78.mat
/home/arasdar/data/Training_data/DATA_79_TYPE79.mat
/home/arasdar/data/Training_data/DATA_80_TYPE80.mat
/home/arasdar/data/Training_data/DATA_81_TYPE81.mat
/home/arasdar/data/Training_data/DATA_82_TYPE82.mat
/home/arasdar/data/Training_data/DATA_83_TYPE83.mat
/home/arasdar/data/Training_data/DATA_84_TYPE84.mat
/home/arasdar/data/Training_data/DATA_85_TYPE85.mat
/home/arasdar/data/Training_data/DATA_86_TYPE86.mat
/home/arasdar/data/Training_data/DATA_87_TYPE87.mat
/home/arasdar/data/Training_data/DATA_88_TYPE88.mat
/home/arasdar/data/Training_data/DATA_89_TYPE89.mat
/home/arasdar/data/Training_data/DATA_90_TYPE90.mat
/home/arasdar/data/Training_data/DATA_91_TYPE91.mat
/home/arasdar/data/Training_data/DATA_92_TYPE92.mat
/home/arasdar/data/Training_data/DATA_93_TYPE93.mat
/home/arasdar/data/Training_data/DATA_94_TYPE94.mat
/home/arasdar/data/Training_data/DATA_95_TYPE95.mat
/home/arasdar/data/Training_data/DATA_96_TYPE96.mat
/home/arasdar/data/Training_data/DATA_97_TYPE97.mat
/home/arasdar/data/Training_data/DATA_98_TYPE98.mat
/home/arasdar/data/Training_data/DATA_99_TYPE99.mat

In [ ]:
# # Loading Matlab .mat data in Python

# # SEPTEMBER 06, 2014
# # A friend of mine just asked me for some tips with this. 
# # I thought I would reply using a blog post so that it can be useful to other people too. 
# # If you collect data with Matlab but want to work on it using Python (e.g. making nice graphs with matplotlib) 
# # you can export a .mat file and then import that into Python using SciPy.

# # First let's save some example data in Matlab:

# # function savematlabdata
# # % save some data in a .mat

# a = [1, 2, 3; 4, 5, 6];
# S.b = [7, 8, 9; 10, 11, 12];
# M(1).c = [2, 4, 6; 8, 10, 12];
# M(2).c = [1, 3, 5; 7, 9, 11];

# save('data.mat','a','S','M')

# # return
# # Now we have a file "data.mat" which stores the array a, the structure S containing an array b, and an array of structures M where each of those contains an array c. Now we can load that data in Python with the scipy.io module and use the "print" function to prove it's there:

# # filename: loadmatlabdata.py
# # description : load in data from a .mat file
# # author: Alex Baldwin
# #==============================================

# import scipy.io as spio

# mat = spio.loadmat('data.mat', squeeze_me=True)

# a = mat['a'] # array
# S = mat['S'] # structure containing an array
# M = mat['M'] # array of structures

# print a[:,:]
# print S['b'][()][:,:] # structures need [()]
# print M[0]['c'][()][:,:]
# print M[1]['c'][()][:,:]

# '''This code shows how to import .mat file (MATLAB format) into dictionary using scipy.io'''

# # First we will import the scipy.io
# import scipy.io
# # load .mat file into dictionary x
# # x = scipy.io.loadmat('/home/bot/Dropbox/course_work/python_study/fMRI_basic/easymatfile.mat')

# # # easymatfile.mat contains 3 matlab variables
# # # a: [10x30]
# # # b: [20x100]
# # # c: [1x1]

# # # # in order to get a, b and c we say
# # # pyA = x['a']
# # # pyB = x['b']
# # # pyC = x['c']

# # # Now we want plot the figures
# # from pylab import *
# # from matplotlib import *
# # # matshow(pyA,1)
# # # matshow(pyB,2)
# # # matshow(pyC,3)
# # # matshow(x_sig, 1)

# # # Now, we will show all three figures
# # show()

In [ ]: