In [1]:
import pandas as pd
import numpy as np
#%matplotlib inline
import matplotlib.pyplot as plt
from IPython.display import display, HTML
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from operator import attrgetter
from matplotlib.patches import Ellipse
from math import atan2,degrees
import numpy.random as rnd
In [2]:
points = pd.read_csv('Clustering.csv',sep=',')
In [27]:
class CenterValue:
def __init__ (self,p,val):
self.value=val
self.point=p
In [24]:
def Distance(p1,p2indx):
p1 = np.array(p1)
P2 = np.array((points.X[p2indx],points.Y[p2indx]))
return np.linalg.norm(p1-p2)
In [19]:
def K_mean(centerpoints):
centers={}
for i in centerpoints:
centers[i]=[]
for i in range(len(points.index)):
values=[]
In [20]:
def GetPointsList(Indexs):
lst=[]
for i in Indexs:
lst.append((points.X[i],points.Y[i]))
return lst
In [21]:
K_mean(GetPointsList(range(4)))
In [26]:
Out[26]:
In [ ]: