In [1]:
import pandas as pd
import numpy as np
#%matplotlib inline
import matplotlib.pyplot as plt
from IPython.display import display, HTML
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from operator import attrgetter
from matplotlib.patches import Ellipse
from math import atan2,degrees
import numpy.random as rnd

In [2]:
points = pd.read_csv('Clustering.csv',sep=',')

In [27]:
class CenterValue:
    def __init__ (self,p,val):
        self.value=val
        self.point=p

In [24]:
def Distance(p1,p2indx):
    p1 = np.array(p1)
    P2 = np.array((points.X[p2indx],points.Y[p2indx]))
    return np.linalg.norm(p1-p2)

In [19]:
def K_mean(centerpoints):
    centers={}
    for i in centerpoints:
        centers[i]=[]
    for i in range(len(points.index)):
        values=[]

In [20]:
def GetPointsList(Indexs):
    lst=[]
    for i in Indexs:
        lst.append((points.X[i],points.Y[i]))
    return lst

In [21]:
K_mean(GetPointsList(range(4)))

In [26]:



Out[26]:
5.0

In [ ]: