In [3]:
import numpy as np
import matplotlib.pyplot as plt
In [4]:
points = [(9,3,1),(2,4,1),(3,3,1),(4,1,1),(1,6,1),(3,9,0),(5,6,0),(6,4,0),(6,2,0),(3,7,0)]
In [13]:
t = plt.figure('roc1.jpg')
plt.plot([x[0] for x in points],[x[1] for x in points],'bo')
plt.plot([3,4],[5,6],'rv')
plt.ylabel('Y')
plt.xlabel('X')
plt.title('Roc1')
plt.show()
In [41]:
def GetInCirclePoints(distances,k=1):
In [82]:
def GetClosePoints(centerpoint,k=1):
indx =0
distances={}
for point in points:
#Calculate Eucludean distance
distance = np.linalg.norm(np.array(centerpoint)-np.array((point[0],point[1])))
#Store all points with the same distance under the same
if distance in distances.keys():
distances[distance].append(indx)
else:
distances[distance] = []
distances[distance].append(indx)
indx+=1
keys = distances.keys()
keys.sort(key = lambda x:x,reverse=False)
for key in keys:
print key , distances[key]
In [83]:
#np.linalg.norm(np.array((5,2))-np.array((3,1)))
p1 = (3,5)
p2 = (4,6)
In [84]:
GetClosePoints(p1)
In [ ]: