C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:14: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(32, (3, 3), input_shape=(64, 64, 3..., activation="relu")`
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:21: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(32, (3, 3), activation="relu")`
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:25: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(2560, (3, 3), activation="relu")`
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:29: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(256, (3, 3), activation="relu")`
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:49: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(activation="relu", units=128)`
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:50: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(activation="softmax", units=4)`
Found 400 images belonging to 4 classes.
Found 120 images belonging to 4 classes.
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:95: UserWarning: Update your `fit_generator` call to the Keras 2 API: `fit_generator(<keras.pre..., epochs=100, validation_data=<keras.pre..., callbacks=[<keras.ca..., validation_steps=4000, steps_per_epoch=200)`
Epoch 1/100
200/200 [==============================] - 41s - loss: 0.5190 - acc: 0.7870 - val_loss: 0.3281 - val_acc: 0.9000
Epoch 2/100
200/200 [==============================] - 40s - loss: 0.2152 - acc: 0.9355 - val_loss: 0.2828 - val_acc: 0.9085
Epoch 3/100
200/200 [==============================] - 40s - loss: 0.1987 - acc: 0.9430 - val_loss: 0.2330 - val_acc: 0.9504
Epoch 4/100
200/200 [==============================] - 40s - loss: 0.1690 - acc: 0.9500 - val_loss: 0.2156 - val_acc: 0.9414
Epoch 5/100
200/200 [==============================] - 40s - loss: 0.1465 - acc: 0.9580 - val_loss: 0.2263 - val_acc: 0.9415
Epoch 6/100
200/200 [==============================] - 40s - loss: 0.1558 - acc: 0.9615 - val_loss: 0.1632 - val_acc: 0.9585
Epoch 7/100
200/200 [==============================] - 40s - loss: 0.1363 - acc: 0.9580 - val_loss: 0.2286 - val_acc: 0.9499
Epoch 8/100
200/200 [==============================] - 40s - loss: 0.1354 - acc: 0.9650 - val_loss: 0.3624 - val_acc: 0.9334
Epoch 9/100
200/200 [==============================] - 40s - loss: 0.1245 - acc: 0.9660 - val_loss: 0.2782 - val_acc: 0.9417
Epoch 10/100
200/200 [==============================] - 40s - loss: 0.1285 - acc: 0.9625 - val_loss: 0.3218 - val_acc: 0.9500
Epoch 00009: early stopping