Using TensorFlow backend.
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:14: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(12, (3, 3), input_shape=(64, 64, 3..., activation="relu")`
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:21: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(5120, (3, 3), activation="relu")`
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:25: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(512, (3, 3), activation="relu")`
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:29: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(256, (3, 3), activation="relu")`
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:49: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(activation="relu", units=128)`
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:50: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(activation="softmax", units=5)`
Found 499 images belonging to 5 classes.
Found 150 images belonging to 5 classes.
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:89: UserWarning: Update your `fit_generator` call to the Keras 2 API: `fit_generator(<keras.pre..., epochs=50, validation_data=<keras.pre..., callbacks=[<keras.ca..., validation_steps=800, steps_per_epoch=200)`
Epoch 1/50
200/200 [==============================] - 94s - loss: 12.8434 - acc: 0.1992 - val_loss: 12.8844 - val_acc: 0.2006
Epoch 2/50
200/200 [==============================] - 93s - loss: 12.8873 - acc: 0.2004 - val_loss: 12.8844 - val_acc: 0.2006
Epoch 3/50
200/200 [==============================] - 91s - loss: 12.8873 - acc: 0.2004 - val_loss: 12.9146 - val_acc: 0.1988
Epoch 4/50
200/200 [==============================] - 93s - loss: 12.8891 - acc: 0.2003 - val_loss: 12.8844 - val_acc: 0.2006
Epoch 5/50
200/200 [==============================] - 91s - loss: 12.8855 - acc: 0.2006 - val_loss: 12.8743 - val_acc: 0.2013
Epoch 6/50
200/200 [==============================] - 93s - loss: 12.8864 - acc: 0.2005 - val_loss: 12.8743 - val_acc: 0.2013
Epoch 7/50
200/200 [==============================] - 91s - loss: 12.8891 - acc: 0.2003 - val_loss: 12.8844 - val_acc: 0.2006
Epoch 8/50
200/200 [==============================] - 91s - loss: 12.8855 - acc: 0.2006 - val_loss: 12.8945 - val_acc: 0.2000
Epoch 9/50
200/200 [==============================] - 91s - loss: 12.8882 - acc: 0.2004 - val_loss: 12.9247 - val_acc: 0.1981
Epoch 10/50
200/200 [==============================] - 91s - loss: 12.8891 - acc: 0.2003 - val_loss: 12.9247 - val_acc: 0.1981
Epoch 11/50
200/200 [==============================] - 90s - loss: 12.8891 - acc: 0.2003 - val_loss: 12.8945 - val_acc: 0.2000
Epoch 00010: early stopping