In [1]:
from utils import *
In [32]:
lr = K.variable(0.1)
In [33]:
ones = K.variable(np.ones(3))
In [34]:
lr, ones
Out[34]:
In [35]:
lr * ones
Out[35]:
In [36]:
fn1 = K.function([], [], updates=[(ones, lr * ones)])
In [37]:
lr.get_value(), ones.get_value()
Out[37]:
In [38]:
fn1([])
ones.get_value()
Out[38]:
In [39]:
lr.set_value(10.0)
fn1([])
ones.get_value()
Out[39]:
In [40]:
lr = 0.001
In [41]:
lr * ones
Out[41]:
In [43]:
fn2 = K.function([], [], updates=[(ones, lr * ones)])
fn2([])
ones.get_value()
Out[43]:
In [44]:
lr = 1000.0
fn2([])
ones.get_value()
Out[44]:
In [52]:
model = Sequential([Dense(1, input_shape=(1,))])
model.compile(optimizer=Adam(), loss='mse')
model.fit(np.array([1.0]), np.array([3.0]), nb_epoch=1, verbose=0)
model.optimizer.updates
Out[52]: