In [1]:
q1 = "select parcel_id, county_id, parcel_sqft, land_value, zone_id, lu_type_id, centroid_x, centroid_y, tax_exempt_flag, school_district, zoning_id from parcels"
q2 = "select parcel_id, dist_bus, dist_rail, in_ugb, in_uga, env_constr_park, env_constr_lake, env_constr_floodplain, env_constr_river, env_constr_landslide, far_id from parcels_spatial"
In [2]:
import psycopg2
import pandas.io.sql as sql
conn_string = "host='localhost' port=5432 dbname='drcog' user='postgres' password='postgres'"
conn = psycopg2.connect(conn_string)
cur = conn.cursor()
parcels1 = sql.read_frame(q1,conn)
parcels2 = sql.read_frame(q2,conn)
buildings = sql.read_frame('select * from buildings',conn)
In [3]:
parcels1
Out[3]:
In [4]:
parcels2
Out[4]:
In [5]:
import pandas as pd
parcels = pd.merge(parcels1,parcels2,left_on='parcel_id',right_on='parcel_id')
In [6]:
parcels.far_id = parcels.far_id.fillna(0)
In [7]:
parcels['prop_constrained'] = parcels.env_constr_park + parcels.env_constr_lake + parcels.env_constr_floodplain + parcels.env_constr_river + parcels.env_constr_landslide
In [8]:
parcels.prop_constrained[parcels.prop_constrained>1.0] = 1.0
In [9]:
import numpy as np
np.unique(parcels.zone_id)
Out[9]:
In [10]:
# store = pd.HDFStore('c:\\urbansim\\data\\drcog.h5')
# store['parcels'] = parcels
# store.close()
In [11]:
buildings
Out[11]:
In [12]:
parcels
Out[12]:
In [13]:
bp = pd.merge(buildings,parcels,left_on='parcel_id',right_on='parcel_id')
In [14]:
bp
Out[14]: