In [1]:
import numpy as np, pandas as pd, os
import psycopg2
import pandas.io.sql as sql
conn_string = "host='localhost' port=5432 dbname='drcog_backup' user='postgres' password='postgres'"
conn = psycopg2.connect(conn_string)
cur = conn.cursor()
query = '''
select a.parcel_id, a.county_id, a.parcel_sqft, a.land_value, a.zone_id, a.lu_type_id, a.centroid_x, a.centroid_y, a.tax_exempt_flag, a.school_district, a.zoning_id, round(ST_X(b.centroid_geom)) as x, round(ST_Y(b.centroid_geom)) as y,
b.dist_bus, b.dist_rail, b.in_ugb, b.in_uga, b.env_constr_park, b.env_constr_lake, b.env_constr_floodplain, b.env_constr_river, b.env_constr_landslide, far_id from parcels a join parcels_spatial b on a.parcel_id = b.parcel_id
'''
parcels = sql.read_frame(query,conn)
In [2]:
parcels[['x','y']].describe()
Out[2]:
In [3]:
parcels['prop_constrained'] = parcels.env_constr_park + parcels.env_constr_lake + parcels.env_constr_floodplain + parcels.env_constr_river + parcels.env_constr_landslide
In [4]:
parcels.prop_constrained[parcels.prop_constrained>1.0] = 1.0
In [5]:
store = pd.HDFStore('c:\\urbansim\\data\\drcog.h5')
store['parcels'] = parcels