In [1]:
import numpy as np
from matplotlib import pyplot as plt
import os
import cv2
%matplotlib inline
In [2]:
trainLoc = '../data/train/'
data = [os.path.join(trainLoc,f) for f in os.listdir(trainLoc)]
In [3]:
def viewImage(x):
plt.figure()
plt.imshow(plt.imread(x))
def getFileLabel(x):
return x.split(os.path.sep)[-1].split(".")[0]
In [4]:
viewImage(data[0])
viewImage(data[50])
viewImage(data[120])
In [5]:
def imageToFeatures(x,size=(32,32)):
x=cv2.cvtColor(x,cv2.COLOR_RGB2GRAY)
return cv2.resize(x,size).flatten()
In [6]:
inputX = np.array([imageToFeatures(cv2.imread(x)) for x in data])
inputY = np.array([getFileLabel(x) for x in data])
In [7]:
testLoc = '../data/test1/'
testData = [os.path.join(testLoc,f) for f in os.listdir(testLoc)]
testX = np.array([imageToFeatures(cv2.imread(x)) for x in testData])
In [21]:
import csv
with open('train_data.csv','w') as csvFile:
writer = csv.writer(csvFile)
for value in inputX:
writer.writerow(value)
with open('train_label.csv','w') as csvFile:
writer = csv.writer(csvFile)
for value in inputY:
writer.writerow([value])
with open('test.csv','w') as csvFile:
writer = csv.writer(csvFile)
for value in testX:
writer.writerow(value)
In [ ]: