In [42]:
from keras.models import Sequential
from keras.layers import Dense
from keras.models import model_from_json
import numpy as np
import os
import pandas as pd
%matplotlib inline

In [46]:
testX = pd.read_csv('test.csv',header=None).values
testX.shape


Out[46]:
(12500, 1024)

In [47]:
testX = testX/255.0

In [48]:
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("model.h5")
print("Loaded model from disk")


Loaded model from disk

In [49]:
output = loaded_model.predict_proba(batch_size=32,x=testX)


12288/12500 [============================>.] - ETA: 0s

In [50]:
output.shape


Out[50]:
(12500, 2)

In [51]:
import csv
with open('keras_simple_nn.csv','w') as csvFile:
    writer = csv.writer(csvFile)
    writer.writerow(['id','label'])
    for i,value in enumerate(output[:,1]):
        writer.writerow([i+1,value])

In [27]:
#from matplotlib import pyplot as plt
#plt.imshow(plt.imread(data[2]))

In [ ]: