In [1]:
# import common packages
import numpy as np
import qiskit
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
# lib from Qiskit AQUA Chemistry
from qiskit_aqua_chemistry import FermionicOperator
# lib from optimizer and algorithm
from qiskit_aqua.operator import Operator
from qiskit_aqua import (get_algorithm_instance, get_optimizer_instance, get_variational_form_instance)
# lib for driver
from qiskit_aqua_chemistry.drivers import ConfigurationManager
from collections import OrderedDict
In [2]:
# using driver to get fermionic Hamiltonian
# PyQuante example
cfg_mgr = ConfigurationManager()
pyquante_cfg = OrderedDict([('atoms', 'H .0 .0 .0; H .0 .0 0.735'), ('units', 'Angstrom'), ('charge', 0), ('multiplicity', 1), ('basis', 'sto3g')])
section = {}
section['properties'] = pyquante_cfg
driver = cfg_mgr.get_driver_instance('PYQUANTE')
molecule = driver.run(section)
h1 = molecule._one_body_integrals
h2 = molecule._two_body_integrals
In [3]:
# convert from fermionic hamiltonian to qubit hamiltonian
ferOp = FermionicOperator(h1=h1, h2=h2)
qubitOp_jw = ferOp.mapping(map_type='JORDAN_WIGNER', threshold=0.00000001)
qubitOp_pa = ferOp.mapping(map_type='PARITY', threshold=0.00000001)
qubitOp_bi = ferOp.mapping(map_type='BRAVYI_KITAEV', threshold=0.00000001)
In [4]:
# print out qubit hamiltonian in Pauli terms and exact solution
qubitOp_jw.convert('paulis','matrix')
qubitOp_jw.chop(10**-10)
print(qubitOp_jw.print_operators())
print(qubitOp_jw.matrix)
# Using exact eigensolver to get the smallest eigenvalue
exact_eigensolver = get_algorithm_instance('ExactEigensolver')
exact_eigensolver.init_args(qubitOp_jw, k=1)
ret = exact_eigensolver.run()
print('The exact ground state energy is: {}'.format(ret['energy']))
In [5]:
# setup VQE
# setup optimizer, use L_BFGS_B optimizer for example
lbfgs = get_optimizer_instance('L_BFGS_B')
lbfgs.set_options(maxfun=1000, factr=10, iprint=10)
# setup variation form generator (generate trial circuits for VQE)
var_form = get_variational_form_instance('RY')
var_form.init_args(qubitOp_jw.num_qubits, 3, entangler_map = {0: [1], 1:[2], 2:[3]})
# setup VQE with operator, variation form, and optimzer
vqe_algorithm = get_algorithm_instance('VQE')
vqe_algorithm.setup_quantum_backend()
vqe_algorithm.init_args(qubitOp_jw, 'matrix', var_form, lbfgs)
results = vqe_algorithm.run()
print("Minimum value: {}".format(results['eigvals'][0]))
print("Parameters: {}".format(results['opt_params']))
In [ ]: