In [1]:
import pandas as pd
import numpy as np
import re

%matplotlib inline

In [2]:
def cleanup_hive_message(mess):
    if('TExecuteStatementResp' in mess):
        mess1 = re.sub('^(.*)infoMessages=\[' , '' , mess)
        mess2 = mess1.split(':')
        # print("HIVE_BEFORE" , mess)
        # print("HIVE_AFTER" , mess2)
        res = mess2[1] + " " +mess2[2] + " " +mess2[3]
        # print("HIVE_AFTER2" , res)
        return res
    return mess

def normalize_model_class_name(model_class_name):
    line1 = model_class_name
    line1 = line1.replace("sklearn2sql.Helpers.Caret_Model.cCaretClassifier_" , "caret.classifier.caret_class_")
    line1 = line1.replace("sklearn2sql.Helpers.Caret_Model.cCaretRegressor_" , "caret.regressor.caret_reg_")
    line1 = line1.replace("sklearn2sql.Helpers.Caret_Model.cCaretPreprocessor_" , "caret.preprocessor.caret_prep_")
    line1 = line1.replace("sklearn2sql.Helpers.Keras_Model.cKerasClassifier_" , "keras.classifier.keras_class_")
    line1 = line1.replace("sklearn2sql.Helpers.Keras_Model.cKerasRegressor_" , "keras.regressor.keras_reg_")
    return line1

def normalize_model_name(model_name):
    line1 = model_name
    line1 = line1.replace("cCaretClassifier_" , "caret_class_")
    line1 = line1.replace("cCaretRegressor_" , "caret_reg_")
    line1 = line1.replace("cCaretPreprocessor_" , "caret_prep_")
    line1 = line1.replace("cKerasClassifier_" , "keras_class_")
    line1 = line1.replace("cKerasRegressor_" , "keras_reg_")
    return line1

database_name_from_dsn = {"pgsql" : "PostgreSQL",
                          "oracle" : "Oracle", 
                          "db2" : "IBM DB2", 
                          "sqltm" : "SQLite",
                          "mssql" : "MS SQL Server",
                          "mysql" : "MariaDB",
                          "hive" : "Apache Hive",
                          "impala" : "Impala",
                          "firebird" : "Firebird",
                          "monetdb" : "MonetDB",
                          "teradata" : "Teradata"}

def strip_punc(x):
    x = x .replace("'" , "")
    x = x .replace("(" , "")
    x = x .replace("," , "")
    return x

def truncate_error_message(x):
    lSpecialErrors = ['UnboundLocalError', 
                      'Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS', 
                      'Exception:CODE_GENERATION_NOT_IMPLEMENTED_FOR_MODEL',
                      'cTrainingError:Exception:TRAIN_FAILED', 
                      'Exception:CHECK_MATERIALIZED_DATA_ERROR', 
                      'Exception:PREDICT_FAILED', 
                      'NAN_VALUE_ENCOUNTERED_IN_MODEL', 
                      'Exception:CODE_GENERATION_DATABASE_NOT_SUPPORTED', 
                      'Exception:CONNECTION_FAILED_WITH_ERROR',
                      'FileNotFoundError', 'IndexError', 'KeyError', 
                      'DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name:', 
                      'cTrainingError']
    for lError in lSpecialErrors:
        if(lError in x):
            return lError + " ..."
    lLongMessages = ["concurrent transaction number is", 
                     "DOUBLE value is out of range in",
                     "Unexpected end of command" , 
                     "Token unknown"]
    for mess in lLongMessages:
        x = re.sub(mess + ".*$", mess + " ...", x) 
     
    x = re.sub("\(Background on this error at:.*\)", "", x) 
    x = re.sub("\[SQL.*$", "\[SQL ...", x) 
    return x[0:400]

def read_bad_csv_file(name):
    rows = [];
    with open(name) as f:
        content = f.readlines()
    for line in content:
        line1 = re.sub('^.*log:BENCH_STATUS ' , '',  line)
        # print(line1)
        fields = line1.split(" ")
        (lModel, lDatasetName, lDSN, lDialect, lDSNType) = fields[0:5]
        lStatus = " ".join(fields[5:-1])
        lTime = fields[-1][:-2]
        fields2 = lStatus.split(" ")
        lErrorMessage = " ".join(fields2[5:])
        status = fields2[4]

        sql_error = lErrorMessage
        
        
        row = [lModel, lDatasetName, lDialect, lDSN, status, lErrorMessage, lTime]
        if(False):
            print("[lModel]" , row[0])
            print("[lDatasetName]" , row[1])
            print("[lDialect]" , row[2])
            print("[lDSN]" , row[3])
            print("[status]" , row[4])
            print("[lErrorMessage]" , row[5])
            print("[lTime]" , row[6])
        rows = rows + [row]

    df = pd.DataFrame(rows);
    df.columns = ['Model' , 'dataset', 'dialect' , 'DSN' , 'status' , 'error_message' , 'elapsed_time']
    df['dialect'] = df['dialect'].apply(lambda x : strip_punc(x))
    df['Model'] = df['Model'].apply(lambda x : strip_punc(x))
    df['dataset'] = df['dataset'].apply(lambda x : strip_punc(x))
    df['status'] = df['status'].apply(lambda x : strip_punc(x))

    print(list( df['dialect'].unique()))
    df['dialect'] = df['dialect'].apply(database_name_from_dsn.get)
    df['Model'] = df['Model'].str.replace("\(\'" , "")
    df['Model'] = df['Model'].str.replace("\'," , "")
    df['Model'] = df['Model'].apply(normalize_model_name)
    df['full_error_message'] = df['error_message']
    df['error_message'] = df['error_message'].str.replace("None\)\)" , "SUCCESS")
    df['error_message'] = df['error_message'].str.replace("None\)," , "SUCCESS")
    
    df['error_message'] = df['error_message'].apply(lambda x : cleanup_hive_message(x))
    df['error_message'] = df['error_message'].apply(truncate_error_message)
    return df

In [3]:
#df = pd.read_csv('result.txt' , engine='python', sep='\s+', index_col=False,
#                 quotechar="'", header=None)

In [4]:
df = read_bad_csv_file('result.txt')


['db2', 'firebird', 'impala', 'monetdb', 'mssql', 'mysql', 'oracle', 'pgsql', 'sqltm', 'teradata']

In [5]:
df.head()


Out[5]:
Model dataset dialect DSN status error_message elapsed_time full_error_message
0 LGBMClassifier DS_BENCH_C_50_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None),
1 LGBMClassifier DS_BENCH_C_50_22_2_2E64DEB6 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None),
2 LGBMClassifier_pipe p_DS_BENCH_C_50_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None),
3 LGBMClassifier DS_BENCH_C_200_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None),
4 LGBMClassifier_pipe p_DS_BENCH_C_50_22_2_2E64DEB6 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None),

In [6]:
df.Model.value_counts()


Out[6]:
LabelBinarizer                      180
keras_class_LSTM                    180
LabelEncoder                        180
keras_class_SimpleRNN_pipe          180
PassiveAggressiveClassifier_pipe    180
DummyClassifier_pipe                180
ExtraTreeClassifier                 180
BaggingClassifier_pipe              180
ExtraTreesClassifier_pipe           180
DummyClassifier                     180
DecisionTreeClassifier              180
keras_class_LSTM_pipe               180
RandomForestClassifier              180
LinearSVC_pipe                      180
RidgeClassifier_pipe                180
ExtraTreeClassifier_pipe            180
DecisionTreeClassifier_pipe         180
BaggingClassifier                   180
LinearSVC                           180
PassiveAggressiveClassifier         180
SGDClassifier_pipe                  180
keras_class_GRU                     180
ExtraTreesClassifier                180
RandomForestClassifier_pipe         180
keras_class_SimpleRNN               180
RidgeClassifierCV_pipe              180
keras_class_GRU_pipe                180
Pipeline                            179
RidgeClassifierCV                   179
OneVsOneClassifier                  179
                                   ... 
caret_reg_glmnet                     60
OrthogonalMatchingPursuitCV          60
BayesianRidge_pipe                   60
BaggingRegressor_pipe                60
caret_class_glm_pipe                 60
keras_reg_Dense                      60
DecisionTreeRegressor                60
caret_reg_rpart                      60
GradientBoostingRegressor_pipe       60
LGBMRegressor                        60
AdaBoostRegressor                    60
LGBMRegressor_pipe                   60
DummyRegressor_pipe                  60
ExtraTreeRegressor                   60
LassoLarsIC_pipe                     60
RandomForestRegressor_pipe           60
LinearSVR                            60
LarsCV                               60
keras_reg_SimpleRNN                  60
LassoCV_pipe                         60
Lasso_pipe                           60
IsolationForest_pipe                 60
caret_reg_ctree                      60
KernelRidge                          60
Lars                                 60
caret_reg_nnet                       60
LinearRegression_pipe                60
caret_reg_svmPoly_pipe               59
EllipticEnvelope_pipe                58
EllipticEnvelope                     56
Name: Model, Length: 251, dtype: int64

In [7]:
def read_classes(name):
    lClasses = {}
    lCategories = {}
    rows = [];
    with open(name) as f:
        content = f.readlines()
    for line in content:
        line1 = line.replace("cGenerationWrapperFactory::createScikitObject() <class '" , "")
        line1 = line1.replace("'>\n" , "")
        line1 = normalize_model_class_name(line1)
        fq_class_name = line1
        short_class_name = fq_class_name.split(".")[-1]
        categeory = ".".join(fq_class_name.split(".")[0:2])
        lClasses[short_class_name] = fq_class_name
        lCategories[short_class_name] = categeory
    return (lClasses , lCategories)

In [8]:
(Classes , Categories) = read_classes("classes.txt")

In [9]:
Classes


Out[9]:
{'LGBMClassifier': 'lightgbm.sklearn.LGBMClassifier',
 'LGBMRegressor': 'lightgbm.sklearn.LGBMRegressor',
 'caret_class_ctree': 'caret.classifier.caret_class_ctree',
 'caret_class_ctree2': 'caret.classifier.caret_class_ctree2',
 'caret_class_earth': 'caret.classifier.caret_class_earth',
 'caret_class_glm': 'caret.classifier.caret_class_glm',
 'caret_class_glmnet': 'caret.classifier.caret_class_glmnet',
 'caret_class_nnet': 'caret.classifier.caret_class_nnet',
 'caret_class_rf': 'caret.classifier.caret_class_rf',
 'caret_class_rpart': 'caret.classifier.caret_class_rpart',
 'caret_class_svmLinear': 'caret.classifier.caret_class_svmLinear',
 'caret_class_svmPoly': 'caret.classifier.caret_class_svmPoly',
 'caret_class_svmRadial': 'caret.classifier.caret_class_svmRadial',
 'caret_class_svmRadialCost': 'caret.classifier.caret_class_svmRadialCost',
 'caret_class_svmRadialSigma': 'caret.classifier.caret_class_svmRadialSigma',
 'caret_class_svmRadialWeights': 'caret.classifier.caret_class_svmRadialWeights',
 'caret_class_xgbTree': 'caret.classifier.caret_class_xgbTree',
 'caret_prep_center_scale': 'caret.preprocessor.caret_prep_center_scale',
 'caret_prep_ica': 'caret.preprocessor.caret_prep_ica',
 'caret_prep_pca': 'caret.preprocessor.caret_prep_pca',
 'caret_reg_ctree': 'caret.regressor.caret_reg_ctree',
 'caret_reg_ctree2': 'caret.regressor.caret_reg_ctree2',
 'caret_reg_earth': 'caret.regressor.caret_reg_earth',
 'caret_reg_glm': 'caret.regressor.caret_reg_glm',
 'caret_reg_glmnet': 'caret.regressor.caret_reg_glmnet',
 'caret_reg_nnet': 'caret.regressor.caret_reg_nnet',
 'caret_reg_rf': 'caret.regressor.caret_reg_rf',
 'caret_reg_rpart': 'caret.regressor.caret_reg_rpart',
 'caret_reg_svmLinear': 'caret.regressor.caret_reg_svmLinear',
 'caret_reg_svmPoly': 'caret.regressor.caret_reg_svmPoly',
 'caret_reg_svmRadial': 'caret.regressor.caret_reg_svmRadial',
 'caret_reg_svmRadialCost': 'caret.regressor.caret_reg_svmRadialCost',
 'caret_reg_svmRadialSigma': 'caret.regressor.caret_reg_svmRadialSigma',
 'caret_reg_xgbTree': 'caret.regressor.caret_reg_xgbTree',
 'keras_class_Dense': 'keras.classifier.keras_class_Dense',
 'keras_class_GRU': 'keras.classifier.keras_class_GRU',
 'keras_class_LSTM': 'keras.classifier.keras_class_LSTM',
 'keras_class_SimpleRNN': 'keras.classifier.keras_class_SimpleRNN',
 'keras_reg_Dense': 'keras.regressor.keras_reg_Dense',
 'keras_reg_GRU': 'keras.regressor.keras_reg_GRU',
 'keras_reg_LSTM': 'keras.regressor.keras_reg_LSTM',
 'keras_reg_SimpleRNN': 'keras.regressor.keras_reg_SimpleRNN',
 'CalibratedClassifierCV': 'sklearn.calibration.CalibratedClassifierCV',
 'EllipticEnvelope': 'sklearn.covariance.elliptic_envelope.EllipticEnvelope',
 'FactorAnalysis': 'sklearn.decomposition.factor_analysis.FactorAnalysis',
 'FastICA': 'sklearn.decomposition.fastica_.FastICA',
 'IncrementalPCA': 'sklearn.decomposition.incremental_pca.IncrementalPCA',
 'KernelPCA': 'sklearn.decomposition.kernel_pca.KernelPCA',
 'NMF': 'sklearn.decomposition.nmf.NMF',
 'LatentDirichletAllocation': 'sklearn.decomposition.online_lda.LatentDirichletAllocation',
 'PCA': 'sklearn.decomposition.pca.PCA',
 'MiniBatchSparsePCA': 'sklearn.decomposition.sparse_pca.MiniBatchSparsePCA',
 'SparsePCA': 'sklearn.decomposition.sparse_pca.SparsePCA',
 'TruncatedSVD': 'sklearn.decomposition.truncated_svd.TruncatedSVD',
 'LinearDiscriminantAnalysis': 'sklearn.discriminant_analysis.LinearDiscriminantAnalysis',
 'DummyClassifier': 'sklearn.dummy.DummyClassifier',
 'DummyRegressor': 'sklearn.dummy.DummyRegressor',
 'BaggingClassifier': 'sklearn.ensemble.bagging.BaggingClassifier',
 'BaggingRegressor': 'sklearn.ensemble.bagging.BaggingRegressor',
 'ExtraTreesClassifier': 'sklearn.ensemble.forest.ExtraTreesClassifier',
 'ExtraTreesRegressor': 'sklearn.ensemble.forest.ExtraTreesRegressor',
 'RandomForestClassifier': 'sklearn.ensemble.forest.RandomForestClassifier',
 'RandomForestRegressor': 'sklearn.ensemble.forest.RandomForestRegressor',
 'GradientBoostingClassifier': 'sklearn.ensemble.gradient_boosting.GradientBoostingClassifier',
 'GradientBoostingRegressor': 'sklearn.ensemble.gradient_boosting.GradientBoostingRegressor',
 'IsolationForest': 'sklearn.ensemble.iforest.IsolationForest',
 'AdaBoostClassifier': 'sklearn.ensemble.weight_boosting.AdaBoostClassifier',
 'AdaBoostRegressor': 'sklearn.ensemble.weight_boosting.AdaBoostRegressor',
 'SelectFromModel': 'sklearn.feature_selection.from_model.SelectFromModel',
 'RFE': 'sklearn.feature_selection.rfe.RFE',
 'RFECV': 'sklearn.feature_selection.rfe.RFECV',
 'GenericUnivariateSelect': 'sklearn.feature_selection.univariate_selection.GenericUnivariateSelect',
 'SelectFdr': 'sklearn.feature_selection.univariate_selection.SelectFdr',
 'SelectFpr': 'sklearn.feature_selection.univariate_selection.SelectFpr',
 'SelectFwe': 'sklearn.feature_selection.univariate_selection.SelectFwe',
 'SelectKBest': 'sklearn.feature_selection.univariate_selection.SelectKBest',
 'SelectPercentile': 'sklearn.feature_selection.univariate_selection.SelectPercentile',
 'MissingIndicator': 'sklearn.impute.MissingIndicator',
 'SimpleImputer': 'sklearn.impute.SimpleImputer',
 'KernelRidge': 'sklearn.kernel_ridge.KernelRidge',
 'LinearRegression': 'sklearn.linear_model.base.LinearRegression',
 'ARDRegression': 'sklearn.linear_model.bayes.ARDRegression',
 'BayesianRidge': 'sklearn.linear_model.bayes.BayesianRidge',
 'ElasticNet': 'sklearn.linear_model.coordinate_descent.ElasticNet',
 'ElasticNetCV': 'sklearn.linear_model.coordinate_descent.ElasticNetCV',
 'Lasso': 'sklearn.linear_model.coordinate_descent.Lasso',
 'LassoCV': 'sklearn.linear_model.coordinate_descent.LassoCV',
 'MultiTaskElasticNet': 'sklearn.linear_model.coordinate_descent.MultiTaskElasticNet',
 'MultiTaskElasticNetCV': 'sklearn.linear_model.coordinate_descent.MultiTaskElasticNetCV',
 'MultiTaskLasso': 'sklearn.linear_model.coordinate_descent.MultiTaskLasso',
 'MultiTaskLassoCV': 'sklearn.linear_model.coordinate_descent.MultiTaskLassoCV',
 'Lars': 'sklearn.linear_model.least_angle.Lars',
 'LarsCV': 'sklearn.linear_model.least_angle.LarsCV',
 'LassoLars': 'sklearn.linear_model.least_angle.LassoLars',
 'LassoLarsCV': 'sklearn.linear_model.least_angle.LassoLarsCV',
 'LassoLarsIC': 'sklearn.linear_model.least_angle.LassoLarsIC',
 'LogisticRegression': 'sklearn.linear_model.logistic.LogisticRegression',
 'LogisticRegressionCV': 'sklearn.linear_model.logistic.LogisticRegressionCV',
 'OrthogonalMatchingPursuit': 'sklearn.linear_model.omp.OrthogonalMatchingPursuit',
 'OrthogonalMatchingPursuitCV': 'sklearn.linear_model.omp.OrthogonalMatchingPursuitCV',
 'PassiveAggressiveClassifier': 'sklearn.linear_model.passive_aggressive.PassiveAggressiveClassifier',
 'PassiveAggressiveRegressor': 'sklearn.linear_model.passive_aggressive.PassiveAggressiveRegressor',
 'Perceptron': 'sklearn.linear_model.perceptron.Perceptron',
 'RandomizedLogisticRegression': 'sklearn.linear_model.randomized_l1.RandomizedLogisticRegression',
 'RANSACRegressor': 'sklearn.linear_model.ransac.RANSACRegressor',
 'Ridge': 'sklearn.linear_model.ridge.Ridge',
 'RidgeClassifier': 'sklearn.linear_model.ridge.RidgeClassifier',
 'RidgeClassifierCV': 'sklearn.linear_model.ridge.RidgeClassifierCV',
 'RidgeCV': 'sklearn.linear_model.ridge.RidgeCV',
 'SGDClassifier': 'sklearn.linear_model.stochastic_gradient.SGDClassifier',
 'SGDRegressor': 'sklearn.linear_model.stochastic_gradient.SGDRegressor',
 'TheilSenRegressor': 'sklearn.linear_model.theil_sen.TheilSenRegressor',
 'OneVsOneClassifier': 'sklearn.multiclass.OneVsOneClassifier',
 'OneVsRestClassifier': 'sklearn.multiclass.OneVsRestClassifier',
 'BernoulliNB': 'sklearn.naive_bayes.BernoulliNB',
 'ComplementNB': 'sklearn.naive_bayes.ComplementNB',
 'GaussianNB': 'sklearn.naive_bayes.GaussianNB',
 'MultinomialNB': 'sklearn.naive_bayes.MultinomialNB',
 'MLPClassifier': 'sklearn.neural_network.multilayer_perceptron.MLPClassifier',
 'MLPRegressor': 'sklearn.neural_network.multilayer_perceptron.MLPRegressor',
 'FeatureUnion': 'sklearn.pipeline.FeatureUnion',
 'Pipeline': 'sklearn.pipeline.Pipeline',
 'Binarizer': 'sklearn.preprocessing.data.Binarizer',
 'MaxAbsScaler': 'sklearn.preprocessing.data.MaxAbsScaler',
 'MinMaxScaler': 'sklearn.preprocessing.data.MinMaxScaler',
 'Normalizer': 'sklearn.preprocessing.data.Normalizer',
 'PolynomialFeatures': 'sklearn.preprocessing.data.PolynomialFeatures',
 'PowerTransformer': 'sklearn.preprocessing.data.PowerTransformer',
 'QuantileTransformer': 'sklearn.preprocessing.data.QuantileTransformer',
 'RobustScaler': 'sklearn.preprocessing.data.RobustScaler',
 'StandardScaler': 'sklearn.preprocessing.data.StandardScaler',
 'KBinsDiscretizer': 'sklearn.preprocessing._discretization.KBinsDiscretizer',
 'OneHotEncoder': 'sklearn.preprocessing._encoders.OneHotEncoder',
 'OrdinalEncoder': 'sklearn.preprocessing._encoders.OrdinalEncoder',
 'Imputer': 'sklearn.preprocessing.imputation.Imputer',
 'LabelBinarizer': 'sklearn.preprocessing.label.LabelBinarizer',
 'LabelEncoder': 'sklearn.preprocessing.label.LabelEncoder',
 'GaussianRandomProjection': 'sklearn.random_projection.GaussianRandomProjection',
 'SparseRandomProjection': 'sklearn.random_projection.SparseRandomProjection',
 'LinearSVC': 'sklearn.svm.classes.LinearSVC',
 'LinearSVR': 'sklearn.svm.classes.LinearSVR',
 'NuSVC': 'sklearn.svm.classes.NuSVC',
 'NuSVR': 'sklearn.svm.classes.NuSVR',
 'OneClassSVM': 'sklearn.svm.classes.OneClassSVM',
 'SVC': 'sklearn.svm.classes.SVC',
 'SVR': 'sklearn.svm.classes.SVR',
 'DecisionTreeClassifier': 'sklearn.tree.tree.DecisionTreeClassifier',
 'DecisionTreeRegressor': 'sklearn.tree.tree.DecisionTreeRegressor',
 'ExtraTreeClassifier': 'sklearn.tree.tree.ExtraTreeClassifier',
 'ExtraTreeRegressor': 'sklearn.tree.tree.ExtraTreeRegressor',
 'XGBClassifier': 'xgboost.sklearn.XGBClassifier',
 'XGBRegressor': 'xgboost.sklearn.XGBRegressor'}

In [10]:
def get_category(model_name):
    real_name = model_name
    if(model_name.endswith('_pipe')):
        real_name = model_name.replace("_pipe" , "")
    return Categories.get(real_name , "bad_category")

df['model_category'] = df['Model'].apply(get_category)
df.head()


Out[10]:
Model dataset dialect DSN status error_message elapsed_time full_error_message model_category
0 LGBMClassifier DS_BENCH_C_50_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None), lightgbm.sklearn
1 LGBMClassifier DS_BENCH_C_50_22_2_2E64DEB6 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None), lightgbm.sklearn
2 LGBMClassifier_pipe p_DS_BENCH_C_50_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None), lightgbm.sklearn
3 LGBMClassifier DS_BENCH_C_200_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None), lightgbm.sklearn
4 LGBMClassifier_pipe p_DS_BENCH_C_50_22_2_2E64DEB6 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None), lightgbm.sklearn

In [11]:
df_model_datasets = pd.DataFrame(df[['Model' , 'dataset']].groupby(['Model'])['dataset'].value_counts())
datatsets_by_model = df_model_datasets.to_dict()['dataset'].keys()

In [12]:
# datatsets_by_model

In [13]:
datatsets_by_model_dict = {}
for k in datatsets_by_model:
    (m , ds) = k
    if(m not in datatsets_by_model_dict.keys()):
        datatsets_by_model_dict[m] = [ds]
    else:
        datatsets_by_model_dict[m] = datatsets_by_model_dict[m] + [ds]
        
# print(datatsets_by_model_dict)

In [14]:
missing_rows = []
dialects = df.dialect.unique()
print(dialects)

print("df.shape", df.shape , df.columns)
for dialect in dialects:
    df1 = df[df['dialect'] == dialect]
    # print("df1.shape", dialect, df1.shape , df1.columns)
    for (m , datasets) in datatsets_by_model_dict.items():
        lMissing = 0
        cond2 = (df1['Model'] == m)
        df2 = df1[cond2]
        # print("df2.shape", dialect, m , df2.shape, df2.columns)
        for ds in datasets:
            cond3 = (df2['dataset'] == ds)
            df3 = df2[cond3]
            # print("df3.shape", dialect, m, ds, df3.shape, df3.columns)
            if(df3.shape[0] == 0):
                # print("MISSING_DATA" , [dialect , m , ds])
                missing_rows = missing_rows + [[m , ds, dialect , 'no_dsn' , 'failure' , 'TIMEOUT' , None, 'TIMEOUT', get_category(m)]]
                lMissing = lMissing + 1
        if(lMissing >= (len(datasets) // 2)):
            print("MODEL_DATASETS_MISSING" , dialect, m, len(datasets) , lMissing)

missing_data = pd.DataFrame(missing_rows, columns=df.columns)
# missing_data


['IBM DB2' 'Firebird' 'Impala' 'MonetDB' 'MS SQL Server' 'MariaDB'
 'Oracle' 'PostgreSQL' 'SQLite' 'Teradata']
df.shape (27230, 9) Index(['Model', 'dataset', 'dialect', 'DSN', 'status', 'error_message',
       'elapsed_time', 'full_error_message', 'model_category'],
      dtype='object')
MODEL_DATASETS_MISSING IBM DB2 caret_class_ctree2 18 9
MODEL_DATASETS_MISSING IBM DB2 caret_class_ctree2_pipe 18 9
MODEL_DATASETS_MISSING IBM DB2 caret_class_svmPoly_pipe 12 6
MODEL_DATASETS_MISSING Firebird caret_class_ctree_pipe 18 10
MODEL_DATASETS_MISSING Firebird caret_class_earth 18 9
MODEL_DATASETS_MISSING Firebird caret_class_earth_pipe 18 10
MODEL_DATASETS_MISSING Firebird caret_class_nnet_pipe 18 9
MODEL_DATASETS_MISSING Firebird caret_class_rf_pipe 18 9
MODEL_DATASETS_MISSING Firebird caret_class_rpart_pipe 18 10
MODEL_DATASETS_MISSING Firebird caret_class_svmPoly 12 6
MODEL_DATASETS_MISSING Firebird caret_class_svmPoly_pipe 12 8
MODEL_DATASETS_MISSING Firebird caret_class_svmRadial_pipe 18 9
MODEL_DATASETS_MISSING Impala BernoulliNB 18 10
MODEL_DATASETS_MISSING Impala BernoulliNB_pipe 18 10
MODEL_DATASETS_MISSING Impala ComplementNB 18 10
MODEL_DATASETS_MISSING Impala ComplementNB_pipe 18 10
MODEL_DATASETS_MISSING Impala GaussianNB 18 10
MODEL_DATASETS_MISSING Impala GaussianNB_pipe 18 10
MODEL_DATASETS_MISSING Impala GradientBoostingClassifier 18 10
MODEL_DATASETS_MISSING Impala GradientBoostingClassifier_pipe 18 11
MODEL_DATASETS_MISSING Impala LGBMClassifier 18 11
MODEL_DATASETS_MISSING Impala LGBMClassifier_pipe 18 11
MODEL_DATASETS_MISSING Impala LinearDiscriminantAnalysis 18 13
MODEL_DATASETS_MISSING Impala LinearDiscriminantAnalysis_pipe 18 13
MODEL_DATASETS_MISSING Impala LogisticRegression 18 13
MODEL_DATASETS_MISSING Impala LogisticRegressionCV 18 13
MODEL_DATASETS_MISSING Impala LogisticRegressionCV_pipe 18 13
MODEL_DATASETS_MISSING Impala LogisticRegression_pipe 18 13
MODEL_DATASETS_MISSING Impala MLPClassifier 18 11
MODEL_DATASETS_MISSING Impala MLPClassifier_pipe 18 12
MODEL_DATASETS_MISSING Impala MultinomialNB 18 11
MODEL_DATASETS_MISSING Impala MultinomialNB_pipe 18 11
MODEL_DATASETS_MISSING Impala NuSVC 18 11
MODEL_DATASETS_MISSING Impala NuSVC_pipe 18 11
MODEL_DATASETS_MISSING Impala OneVsRestClassifier 18 10
MODEL_DATASETS_MISSING Impala OneVsRestClassifier_pipe 18 10
MODEL_DATASETS_MISSING Impala SVC 18 11
MODEL_DATASETS_MISSING Impala SVC_pipe 18 11
MODEL_DATASETS_MISSING Impala XGBClassifier 18 11
MODEL_DATASETS_MISSING Impala XGBClassifier_pipe 18 12
MODEL_DATASETS_MISSING Impala caret_class_earth 18 12
MODEL_DATASETS_MISSING Impala caret_class_earth_pipe 18 13
MODEL_DATASETS_MISSING Impala caret_class_glmnet 18 12
MODEL_DATASETS_MISSING Impala caret_class_glmnet_pipe 18 13
MODEL_DATASETS_MISSING Impala caret_class_nnet 18 10
MODEL_DATASETS_MISSING Impala caret_class_nnet_pipe 18 12
MODEL_DATASETS_MISSING Impala caret_class_svmLinear 18 12
MODEL_DATASETS_MISSING Impala caret_class_svmLinear_pipe 18 13
MODEL_DATASETS_MISSING Impala caret_class_svmPoly_pipe 12 7
MODEL_DATASETS_MISSING Impala caret_class_svmRadial 17 11
MODEL_DATASETS_MISSING Impala caret_class_svmRadialCost 18 12
MODEL_DATASETS_MISSING Impala caret_class_svmRadialCost_pipe 18 13
MODEL_DATASETS_MISSING Impala caret_class_svmRadialSigma 18 12
MODEL_DATASETS_MISSING Impala caret_class_svmRadialSigma_pipe 18 13
MODEL_DATASETS_MISSING Impala caret_class_svmRadialWeights 18 10
MODEL_DATASETS_MISSING Impala caret_class_svmRadialWeights_pipe 18 12
MODEL_DATASETS_MISSING Impala caret_class_svmRadial_pipe 18 13
MODEL_DATASETS_MISSING Impala caret_class_xgbTree 18 10
MODEL_DATASETS_MISSING Impala caret_class_xgbTree_pipe 18 11
MODEL_DATASETS_MISSING MonetDB caret_class_ctree_pipe 18 9
MODEL_DATASETS_MISSING MonetDB caret_class_earth_pipe 18 10
MODEL_DATASETS_MISSING MonetDB caret_class_glmnet 18 14
MODEL_DATASETS_MISSING MonetDB caret_class_glmnet_pipe 18 14
MODEL_DATASETS_MISSING MonetDB caret_class_nnet 18 14
MODEL_DATASETS_MISSING MonetDB caret_class_nnet_pipe 18 14
MODEL_DATASETS_MISSING MonetDB caret_class_rpart_pipe 18 9
MODEL_DATASETS_MISSING MonetDB caret_class_svmPoly 12 6
MODEL_DATASETS_MISSING MonetDB caret_class_svmPoly_pipe 12 7
MODEL_DATASETS_MISSING MonetDB caret_class_svmRadial 17 8
MODEL_DATASETS_MISSING MonetDB caret_class_svmRadialCost_pipe 18 10
MODEL_DATASETS_MISSING MonetDB caret_class_svmRadialSigma 18 9
MODEL_DATASETS_MISSING MonetDB caret_class_svmRadialSigma_pipe 18 10
MODEL_DATASETS_MISSING MonetDB caret_class_svmRadialWeights 18 9
MODEL_DATASETS_MISSING MonetDB caret_class_svmRadialWeights_pipe 18 10
MODEL_DATASETS_MISSING MonetDB caret_class_svmRadial_pipe 18 10
MODEL_DATASETS_MISSING MonetDB caret_class_xgbTree 18 14
MODEL_DATASETS_MISSING MonetDB caret_class_xgbTree_pipe 18 14
MODEL_DATASETS_MISSING MS SQL Server caret_class_ctree2 18 9
MODEL_DATASETS_MISSING MS SQL Server caret_class_ctree2_pipe 18 18
MODEL_DATASETS_MISSING MS SQL Server caret_class_svmPoly_pipe 12 6
MODEL_DATASETS_MISSING Oracle NuSVC 18 10
MODEL_DATASETS_MISSING Oracle SVC 18 10
MODEL_DATASETS_MISSING Oracle caret_class_svmPoly_pipe 12 6
MODEL_DATASETS_MISSING SQLite caret_class_nnet_pipe 18 9
MODEL_DATASETS_MISSING SQLite caret_class_svmLinear_pipe 18 9
MODEL_DATASETS_MISSING SQLite caret_class_svmPoly 12 6
MODEL_DATASETS_MISSING SQLite caret_class_svmPoly_pipe 12 6
MODEL_DATASETS_MISSING SQLite caret_class_svmRadialCost_pipe 18 9
MODEL_DATASETS_MISSING SQLite caret_class_svmRadialSigma 18 9
MODEL_DATASETS_MISSING SQLite caret_class_svmRadialSigma_pipe 18 9
MODEL_DATASETS_MISSING SQLite caret_class_svmRadialWeights_pipe 18 9
MODEL_DATASETS_MISSING SQLite caret_class_svmRadial_pipe 18 10
MODEL_DATASETS_MISSING SQLite caret_class_xgbTree_pipe 18 9
MODEL_DATASETS_MISSING Teradata caret_class_glmnet 18 9
MODEL_DATASETS_MISSING Teradata caret_class_glmnet_pipe 18 10

In [15]:
missing_data.head()


Out[15]:
Model dataset dialect DSN status error_message elapsed_time full_error_message model_category
0 SVC DS_BENCH_C_200_82_10_EA8E6ACF IBM DB2 no_dsn failure TIMEOUT None TIMEOUT sklearn.svm
1 caret_class_ctree2 DS_BENCH_C_200_22_2_2E64DEB6 IBM DB2 no_dsn failure TIMEOUT None TIMEOUT caret.classifier
2 caret_class_ctree2 DS_BENCH_C_200_22_4_9802FBBD IBM DB2 no_dsn failure TIMEOUT None TIMEOUT caret.classifier
3 caret_class_ctree2 DS_BENCH_C_200_22_10_D28EF166 IBM DB2 no_dsn failure TIMEOUT None TIMEOUT caret.classifier
4 caret_class_ctree2 DS_BENCH_C_200_82_10_EA8E6ACF IBM DB2 no_dsn failure TIMEOUT None TIMEOUT caret.classifier

In [16]:
df = df.append(missing_data , ignore_index=True)

In [17]:
df[df.error_message == "'"].head(200)


Out[17]:
Model dataset dialect DSN status error_message elapsed_time full_error_message model_category

In [18]:
df.shape


Out[18]:
(28910, 9)

In [19]:
df.dialect.value_counts()


Out[19]:
MonetDB          2891
Impala           2891
IBM DB2          2891
Firebird         2891
MS SQL Server    2891
Teradata         2891
SQLite           2891
PostgreSQL       2891
MariaDB          2891
Oracle           2891
Name: dialect, dtype: int64

In [20]:
#df0[df0.ds == numpy.na]
df_errors = df[(df.error_message != 'SUCCESS')]
indices = df_errors.error_message.apply(lambda x : 'dialect' not in x)
df_errors = df_errors[indices]

In [21]:
msg_by_estim_and_dsn = pd.DataFrame(df_errors.groupby(['dialect'])['error_message'].value_counts())

In [22]:
df4 = msg_by_estim_and_dsn.sort_values(by='error_message' , ascending=False)
df4.head(df4.shape[0])


/home/antoine/.local/lib/python3.6/site-packages/ipykernel_launcher.py:1: FutureWarning: 'error_message' is both an index level and a column label.
Defaulting to column, but this will raise an ambiguity error in a future version
  """Entry point for launching an IPython kernel.
Out[22]:
error_message
dialect error_message
Impala TIMEOUT 587
MonetDB TIMEOUT 391
PostgreSQL Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 254
IBM DB2 Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 254
MS SQL Server Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 244
Firebird "DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 244
MariaDB Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 240
Oracle Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 239
Teradata Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 232
Firebird TIMEOUT 217
SQLite Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 168
TIMEOUT 162
Teradata 'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 160
MonetDB Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 146
Impala Exception:CODE_GENERATION_DATABASE_NOT_SUPPORTED ... 142
MonetDB Exception:CODE_GENERATION_DATABASE_NOT_SUPPORTED ... 141
Firebird 'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 131
Impala DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name: ... 118
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 118
Teradata TIMEOUT 112
Firebird 'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -902\\n- Dynamic SQL Error\\n- Too many Contexts of Relation/Procedure/Views. Maximum allowed is 256\', -902, 335544569) \[SQL ... 103
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 92
Oracle TIMEOUT 92
Firebird 'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while executing SQL statement:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range\', -802, 335544321) \[SQL ... 88
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range', -802, 335544321) , 69
MariaDB TIMEOUT 42
MS SQL Server TIMEOUT 41
Impala Exception:CODE_GENERATION_NOT_IMPLEMENTED_FOR_MODEL ... 36
MariaDB Exception:CODE_GENERATION_NOT_IMPLEMENTED_FOR_MODEL ... 36
SQLite Exception:CODE_GENERATION_NOT_IMPLEMENTED_FOR_MODEL ... 36
... ...
FileNotFoundError ... 1
cTrainingError ... 1
IBM DB2 'DBAPIError:(ibm_db_dbi.Error) ibm_db_dbi::Error: [IBM][CLI Driver][DB2/LINUXX8664] SQL0802N Arithmetic overflow or other arithmetic exception occurred. SQLSTATE=22003 SQLCODE=-802 , 1
cTrainingError ... 1
Exception:PREDICT_FAILED ... 1
'ProgrammingError:(ibm_db_dbi.ProgrammingError) ibm_db_dbi::ProgrammingError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0601N The name of the object to be created is identical to the existing name "DB.TMP_20181205235842_F5UC68X_KERNAGG_B9" of type "CREATE TEMPORARY TABLE". SQLSTATE=42710 SQLCODE=-601 \[SQL ... 1
'ProgrammingError:(ibm_db_dbi.ProgrammingError) ibm_db_dbi::ProgrammingError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0204N "DB.TMP_20181205235842_F5UC68X_KERNAGG_B9" is an undefined name. SQLSTATE=42704 SQLCODE=-204 \[SQL ... 1
Firebird cTrainingError ... 1
Teradata 'DatabaseError:(teradata.api.DatabaseError) (5639, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-5639)Request size exceeds Parser limit of 1048500 bytes.\') \[SQL ... 1
Exception:PREDICT_FAILED ... 1
SQLite 'ValueError:Length mismatch: Expected axis has 20 elements, new values have 5 elements'), 1
Impala 'DBAPIError:(impala.error.HiveServer2Error) ImpalaRuntimeException: Error making \'createTable\' RPC to Hive Metastore: \nCAUSED BY: AlreadyExistsException: Table tmp_20181207193148_aj3ecws_ads_imp_1_out already exists\n \[SQL ... 1
"OperationalError:(impala.error.OperationalError) TableNotFoundException: Table not found: impala_db.tmp_20181207193148_aj3ecws_ads_imp_1_out\n \[SQL ... 1
'DBAPIError:(impala.error.HiveServer2Error) ExecQueryFInstances rpc query_id=16432345ede1bdbc:cf2b999500000000 failed: Failed to get minimum memory reservation of 1.73 GB on daemon cloudera:22000 for query 16432345ede1bdbc:cf2b999500000000 because it would exceed an applicable memory limit. Memory is likely oversubscribed. Reducing query concurrency or configuring admission control may help avoid 1
Oracle IndexError ... 1
cTrainingError ... 1
MonetDB cTrainingError ... 1
MariaDB cTrainingError ... 1
FileNotFoundError ... 1
MS SQL Server cTrainingError ... 1
'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \'##TMP_20181206010532_OEPNFRI_OVR_Score_1\' in the database.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 1
'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \'##TMP_20181206010237_ZWPX1VH_ADS_imp_1_OUT\' in the database.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 1
'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \'##TMP_20181206005156_H92RC4Z_ADS_imp_1_OUT\' in the database.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 1
PostgreSQL FileNotFoundError ... 1
KeyError ... 1
cTrainingError ... 1
MS SQL Server "OperationalError:(pymssql.OperationalError) (20004, b'DB-Lib error message 20004, severity 9:\\nRead from the server failed (db:1433)\\nNet-Lib error during Connection reset by peer (104)\\nDB-Lib error message 20002, severity 9:\\nAdaptive Server connection failed (db:1433)\\n') , 1
Impala cTrainingError ... 1
Oracle FileNotFoundError ... 1
Teradata cTrainingError ... 1

127 rows × 1 columns


In [23]:
sorted(df.error_message.unique().tolist())


Out[23]:
['"DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Exceeded the maximum depth of an expression tree (1000).\\n \\[SQL ...',
 '"DatabaseError:(\'Error while commiting transaction:\\\\n- SQLCODE: -913\\\\n- deadlock\\\\n- update conflicts with concurrent update\\\\n- concurrent transaction number is ...',
 '"DatabaseError:(fdb.fbcore.DatabaseError) (\'Cursor.fetchone:\\\\n- SQLCODE: -802\\\\n- arithmetic exception, numeric overflow, or string truncation\\\\n- numeric value is out of range\', -802, 335544321) ,',
 '"DatabaseError:(fdb.fbcore.DatabaseError) (\'Cursor.fetchone:\\\\n- SQLCODE: -901\\\\n- Integer overflow.  The result of an integer operation caused the most significant bit of the result to carry.\', -901, 335544779) ,',
 '"DatabaseError:(teradata.api.DatabaseError) (10670, \'[07009] [Teradata][ODBC] (10670) Invalid descriptor index, descriptor record does not exist, or descriptor record was not properly initialized.\') ,',
 '"OperationalError:(impala.error.OperationalError) TableNotFoundException: Table not found: impala_db.tmp_20181207193148_aj3ecws_ads_imp_1_out\\n \\[SQL ...',
 '"OperationalError:(pymssql.OperationalError) (125, b\'Case expressions may only be nested to level 10.DB-Lib error message 20018, severity 15:\\\\nGeneral SQL Server error: Check messages from the SQL Server\\\\n\') \\[SQL ...',
 '"OperationalError:(pymssql.OperationalError) (125, b\'Case expressions may only be nested to level 10.DB-Lib error message 20018, severity 15:\\\\nGeneral SQL Server error: Check messages from the SQL Server\\\\nDB-Lib error message 20018, severity 15:\\\\nGeneral SQL Server error: Check messages from the SQL Server\\\\nDB-Lib error message 20018, severity 15:\\\\nGeneral SQL Server error: Check messages fro',
 '"OperationalError:(pymssql.OperationalError) (20004, b\'DB-Lib error message 20004, severity 9:\\\\nRead from the server failed (db:1433)\\\\nNet-Lib error during Connection reset by peer (104)\\\\nDB-Lib error message 20002, severity 9:\\\\nAdaptive Server connection failed (db:1433)\\\\n\') ,',
 '"OperationalError:(pymssql.OperationalError) (8115, b\'Arithmetic overflow error converting expression to data type float.DB-Lib error message 20018, severity 16:\\\\nGeneral SQL Server error: Check messages from the SQL Server\\\\n\') \\[SQL ...',
 '"OperationalError:(pymssql.OperationalError) (8631, b\'Internal error: Server stack limit has been reached. Please look for potentially deep nesting in your query, and try to simplify it.DB-Lib error message 20018, severity 17:\\\\nGeneral SQL Server error: Check messages from the SQL Server\\\\n\') \\[SQL ...',
 "'DBAPIError:(builtins.BrokenPipeError) [Errno 32] Broken pipe ,",
 "'DBAPIError:(ibm_db_dbi.Error) ibm_db_dbi::Error: [IBM][CLI Driver][DB2/LINUXX8664] SQL0802N  Arithmetic overflow or other arithmetic exception occurred.  SQLSTATE=22003 SQLCODE=-802 ,",
 "'DBAPIError:(impala.error.HiveServer2Error) ExecQueryFInstances rpc query_id=16432345ede1bdbc:cf2b999500000000 failed: Failed to get minimum memory reservation of 1.73 GB on daemon cloudera:22000 for query 16432345ede1bdbc:cf2b999500000000 because it would exceed an applicable memory limit. Memory is likely oversubscribed. Reducing query concurrency or configuring admission control may help avoid ",
 "'DBAPIError:(impala.error.HiveServer2Error) ImpalaRuntimeException: Error making \\'createTable\\' RPC to Hive Metastore: \\nCAUSED BY: AlreadyExistsException: Table tmp_20181207193148_aj3ecws_ads_imp_1_out already exists\\n \\[SQL ...",
 "'DataError:(ibm_db_dbi.DataError) ibm_db_dbi::DataError: SQLNumResultCols failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0840N  Too many items were returned in a SELECT list.  SQLSTATE=54004 SQLCODE=-840 \\[SQL ...",
 "'DataError:(ibm_db_dbi.DataError) ibm_db_dbi::DataError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL1585N  A temporary table could not be created because there is no available system temporary table space that has a compatible page size.  SQLSTATE=54048 SQLCODE=-1585 \\[SQL ...",
 "'DataError:(psycopg2.DataError) value out of range: overflow\\n \\[SQL ...",
 "'DataError:(psycopg2.DataError) value out of range: underflow\\n \\[SQL ...",
 "'DatabaseError:(fdb.fbcore.DatabaseError) (\\'Error while executing SQL statement:\\\\n- SQLCODE: -802\\\\n- arithmetic exception, numeric overflow, or string truncation\\\\n- numeric value is out of range\\', -802, 335544321) \\[SQL ...",
 "'DatabaseError:(fdb.fbcore.DatabaseError) (\\'Error while preparing SQL statement:\\\\n- SQLCODE: -104\\\\n- Dynamic SQL Error\\\\n- SQL error code = -104\\\\n- Token unknown ...",
 "'DatabaseError:(fdb.fbcore.DatabaseError) (\\'Error while preparing SQL statement:\\\\n- SQLCODE: -104\\\\n- Dynamic SQL Error\\\\n- SQL error code = -104\\\\n- Unexpected end of command ...",
 "'DatabaseError:(fdb.fbcore.DatabaseError) (\\'Error while preparing SQL statement:\\\\n- SQLCODE: -901\\\\n- request size limit exceeded\\', -901, 335544382) \\[SQL ...",
 "'DatabaseError:(fdb.fbcore.DatabaseError) (\\'Error while preparing SQL statement:\\\\n- SQLCODE: -902\\\\n- Dynamic SQL Error\\\\n- Too many Contexts of Relation/Procedure/Views. Maximum allowed is 256\\', -902, 335544569) \\[SQL ...",
 "'DatabaseError:(teradata.api.DatabaseError) (2616, \\'[22003] [Teradata][ODBC Teradata Driver][Teradata Database](-2616)Numeric overflow occurred during computation.\\') \\[SQL ...",
 "'DatabaseError:(teradata.api.DatabaseError) (3710, \\'[HY001] [Teradata][ODBC Teradata Driver][Teradata Database](-3710)Insufficient memory to parse this request, during optimizer phase.\\') \\[SQL ...",
 "'DatabaseError:(teradata.api.DatabaseError) (3710, \\'[HY001] [Teradata][ODBC Teradata Driver][Teradata Database](-3710)Insufficient memory to parse this request, during queryrewrite phase.\\') \\[SQL ...",
 "'DatabaseError:(teradata.api.DatabaseError) (3754, \\'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\\') \\[SQL ...",
 "'DatabaseError:(teradata.api.DatabaseError) (5639, \\'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-5639)Request size exceeds Parser limit of 1048500 bytes.\\') \\[SQL ...",
 '\'InternalError:(ibm_db_dbi.InternalError) ibm_db_dbi::InternalError: SQLNumResultCols failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0973N  Not enough storage is available in the "AGENT_STACK_SZ" heap or stack to process the statement.  SQLSTATE=57011 SQLCODE=-973 \\[SQL ...',
 '\'OperationalError:(_mysql_exceptions.OperationalError) (1436, "Thread stack overrun:  1238176 bytes used of a 1269760 byte stack, and 32000 bytes needed.  Use \\\'mysqld --thread_stack=#\\\' to specify a bigger stack") \\[SQL ...',
 '\'OperationalError:(_mysql_exceptions.OperationalError) (1690, "DOUBLE value is out of range in ...',
 '\'OperationalError:(psycopg2.OperationalError) stack depth limit exceeded\\nHINT:  Increase the configuration parameter "max_stack_depth" (currently 2048kB), after ensuring the platform\\\'s stack depth limit is adequate.\\n \\[SQL ...',
 "'OperationalError:(psycopg2.OperationalError) target lists can have at most 1664 entries\\n \\[SQL ...",
 "'OperationalError:(pymonetdb.exceptions.OperationalError) Math exception: Numerical argument out of domain\\n \\[SQL ...",
 '\'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \\\'##TMP_20181206005156_H92RC4Z_ADS_imp_1_OUT\\\' in the database.DB-Lib error message 20018, severity 16:\\\\nGeneral SQL Server error: Check messages from the SQL Server\\\\n") \\[SQL ...',
 '\'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \\\'##TMP_20181206010237_ZWPX1VH_ADS_imp_1_OUT\\\' in the database.DB-Lib error message 20018, severity 16:\\\\nGeneral SQL Server error: Check messages from the SQL Server\\\\n") \\[SQL ...',
 '\'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \\\'##TMP_20181206010532_OEPNFRI_OVR_Score_1\\\' in the database.DB-Lib error message 20018, severity 16:\\\\nGeneral SQL Server error: Check messages from the SQL Server\\\\n") \\[SQL ...',
 '\'OperationalError:(pymssql.OperationalError) (701, b"There is insufficient system memory in resource pool \\\'default\\\' to run this query.DB-Lib error message 20018, severity 17:\\\\nGeneral SQL Server error: Check messages from the SQL Server\\\\n") \\[SQL ...',
 "'OperationalError:(sqlite3.OperationalError) Expression tree is too large (maximum depth 1000) \\[SQL ...",
 "'OperationalError:(sqlite3.OperationalError) parser stack overflow \\[SQL ...",
 "'OperationalError:(sqlite3.OperationalError) too many columns in result set \\[SQL ...",
 "'OperationalError:(sqlite3.OperationalError) too many terms in compound SELECT \\[SQL ...",
 "'ProgrammingError:(ibm_db_dbi.ProgrammingError) ibm_db_dbi::ProgrammingError: SQLNumResultCols failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0419N  A decimal divide operation is not valid because the result would have a negative scale.  SQLSTATE=42911 SQLCODE=-419 \\[SQL ...",
 '\'ProgrammingError:(ibm_db_dbi.ProgrammingError) ibm_db_dbi::ProgrammingError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0204N  "DB.TMP_20181205235842_F5UC68X_KERNAGG_B9" is an undefined name.  SQLSTATE=42704 SQLCODE=-204 \\[SQL ...',
 '\'ProgrammingError:(ibm_db_dbi.ProgrammingError) ibm_db_dbi::ProgrammingError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0601N  The name of the object to be created is identical to the existing name "DB.TMP_20181205235842_F5UC68X_KERNAGG_B9" of type "CREATE TEMPORARY TABLE".  SQLSTATE=42710 SQLCODE=-601 \\[SQL ...',
 "'ValueError:Length mismatch: Expected axis has 20 elements, new values have 5 elements'),",
 "'ValueError:Length mismatch: Expected axis has 5 elements, new values have 20 elements'),",
 'DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name: ...',
 'Exception:CODE_GENERATION_DATABASE_NOT_SUPPORTED ...',
 'Exception:CODE_GENERATION_NOT_IMPLEMENTED_FOR_MODEL ...',
 'Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ...',
 'Exception:CONNECTION_FAILED_WITH_ERROR ...',
 'Exception:PREDICT_FAILED ...',
 'FileNotFoundError ...',
 'IndexError ...',
 'KeyError ...',
 'NAN_VALUE_ENCOUNTERED_IN_MODEL ...',
 'SUCCESS',
 'TIMEOUT',
 'cTrainingError ...',
 'cTrainingError:Exception:TRAIN_FAILED ...']

In [24]:
pd.DataFrame(df.error_message.value_counts())


Out[24]:
error_message
SUCCESS 23280
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1987
TIMEOUT 1680
Exception:CODE_GENERATION_NOT_IMPLEMENTED_FOR_MODEL ... 358
Exception:CODE_GENERATION_DATABASE_NOT_SUPPORTED ... 283
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 244
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 160
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 131
DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name: ... 118
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -902\\n- Dynamic SQL Error\\n- Too many Contexts of Relation/Procedure/Views. Maximum allowed is 256\', -902, 335544569) \[SQL ... 103
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while executing SQL statement:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range\', -802, 335544321) \[SQL ... 88
cTrainingError:Exception:TRAIN_FAILED ... 78
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range', -802, 335544321) , 69
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 35
'DBAPIError:(builtins.BrokenPipeError) [Errno 32] Broken pipe , 31
Exception:CONNECTION_FAILED_WITH_ERROR ... 30
"OperationalError:(pymssql.OperationalError) (125, b'Case expressions may only be nested to level 10.DB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages from the SQL Server\\nDB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages from the SQL Server\\nDB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages fro 23
'DatabaseError:(teradata.api.DatabaseError) (2616, \'[22003] [Teradata][ODBC Teradata Driver][Teradata Database](-2616)Numeric overflow occurred during computation.\') \[SQL ... 21
'OperationalError:(_mysql_exceptions.OperationalError) (1690, "DOUBLE value is out of range in ... 20
"OperationalError:(pymssql.OperationalError) (8115, b'Arithmetic overflow error converting expression to data type float.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n') \[SQL ... 18
'DataError:(psycopg2.DataError) value out of range: overflow\n \[SQL ... 13
'OperationalError:(pymonetdb.exceptions.OperationalError) Math exception: Numerical argument out of domain\n \[SQL ... 12
cTrainingError ... 10
'DataError:(psycopg2.DataError) value out of range: underflow\n \[SQL ... 8
FileNotFoundError ... 8
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Token unknown ... 6
'OperationalError:(sqlite3.OperationalError) parser stack overflow \[SQL ... 6
"OperationalError:(pymssql.OperationalError) (125, b'Case expressions may only be nested to level 10.DB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages from the SQL Server\\n') \[SQL ... 6
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -901\\n- request size limit exceeded\', -901, 335544382) \[SQL ... 6
'DatabaseError:(teradata.api.DatabaseError) (3710, \'[HY001] [Teradata][ODBC Teradata Driver][Teradata Database](-3710)Insufficient memory to parse this request, during optimizer phase.\') \[SQL ... 6
... ...
"DatabaseError:(teradata.api.DatabaseError) (10670, '[07009] [Teradata][ODBC] (10670) Invalid descriptor index, descriptor record does not exist, or descriptor record was not properly initialized.') , 4
'OperationalError:(psycopg2.OperationalError) target lists can have at most 1664 entries\n \[SQL ... 4
'OperationalError:(sqlite3.OperationalError) too many terms in compound SELECT \[SQL ... 4
'DataError:(ibm_db_dbi.DataError) ibm_db_dbi::DataError: SQLNumResultCols failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0840N Too many items were returned in a SELECT list. SQLSTATE=54004 SQLCODE=-840 \[SQL ... 4
'OperationalError:(sqlite3.OperationalError) too many columns in result set \[SQL ... 4
'DatabaseError:(teradata.api.DatabaseError) (3710, \'[HY001] [Teradata][ODBC Teradata Driver][Teradata Database](-3710)Insufficient memory to parse this request, during queryrewrite phase.\') \[SQL ... 3
IndexError ... 3
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -901\\n- Integer overflow. The result of an integer operation caused the most significant bit of the result to carry.', -901, 335544779) , 3
'ValueError:Length mismatch: Expected axis has 20 elements, new values have 5 elements'), 3
"OperationalError:(pymssql.OperationalError) (8631, b'Internal error: Server stack limit has been reached. Please look for potentially deep nesting in your query, and try to simplify it.DB-Lib error message 20018, severity 17:\\nGeneral SQL Server error: Check messages from the SQL Server\\n') \[SQL ... 2
'OperationalError:(_mysql_exceptions.OperationalError) (1436, "Thread stack overrun: 1238176 bytes used of a 1269760 byte stack, and 32000 bytes needed. Use \'mysqld --thread_stack=#\' to specify a bigger stack") \[SQL ... 2
'OperationalError:(sqlite3.OperationalError) Expression tree is too large (maximum depth 1000) \[SQL ... 2
'InternalError:(ibm_db_dbi.InternalError) ibm_db_dbi::InternalError: SQLNumResultCols failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0973N Not enough storage is available in the "AGENT_STACK_SZ" heap or stack to process the statement. SQLSTATE=57011 SQLCODE=-973 \[SQL ... 2
'OperationalError:(psycopg2.OperationalError) stack depth limit exceeded\nHINT: Increase the configuration parameter "max_stack_depth" (currently 2048kB), after ensuring the platform\'s stack depth limit is adequate.\n \[SQL ... 2
'DataError:(ibm_db_dbi.DataError) ibm_db_dbi::DataError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL1585N A temporary table could not be created because there is no available system temporary table space that has a compatible page size. SQLSTATE=54048 SQLCODE=-1585 \[SQL ... 2
"DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Exceeded the maximum depth of an expression tree (1000).\n \[SQL ... 2
'OperationalError:(pymssql.OperationalError) (701, b"There is insufficient system memory in resource pool \'default\' to run this query.DB-Lib error message 20018, severity 17:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 2
'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \'##TMP_20181206005156_H92RC4Z_ADS_imp_1_OUT\' in the database.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 1
'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \'##TMP_20181206010532_OEPNFRI_OVR_Score_1\' in the database.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 1
'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \'##TMP_20181206010237_ZWPX1VH_ADS_imp_1_OUT\' in the database.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 1
'DatabaseError:(teradata.api.DatabaseError) (5639, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-5639)Request size exceeds Parser limit of 1048500 bytes.\') \[SQL ... 1
'DBAPIError:(ibm_db_dbi.Error) ibm_db_dbi::Error: [IBM][CLI Driver][DB2/LINUXX8664] SQL0802N Arithmetic overflow or other arithmetic exception occurred. SQLSTATE=22003 SQLCODE=-802 , 1
'ProgrammingError:(ibm_db_dbi.ProgrammingError) ibm_db_dbi::ProgrammingError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0601N The name of the object to be created is identical to the existing name "DB.TMP_20181205235842_F5UC68X_KERNAGG_B9" of type "CREATE TEMPORARY TABLE". SQLSTATE=42710 SQLCODE=-601 \[SQL ... 1
"OperationalError:(pymssql.OperationalError) (20004, b'DB-Lib error message 20004, severity 9:\\nRead from the server failed (db:1433)\\nNet-Lib error during Connection reset by peer (104)\\nDB-Lib error message 20002, severity 9:\\nAdaptive Server connection failed (db:1433)\\n') , 1
'DBAPIError:(impala.error.HiveServer2Error) ExecQueryFInstances rpc query_id=16432345ede1bdbc:cf2b999500000000 failed: Failed to get minimum memory reservation of 1.73 GB on daemon cloudera:22000 for query 16432345ede1bdbc:cf2b999500000000 because it would exceed an applicable memory limit. Memory is likely oversubscribed. Reducing query concurrency or configuring admission control may help avoid 1
'ProgrammingError:(ibm_db_dbi.ProgrammingError) ibm_db_dbi::ProgrammingError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0204N "DB.TMP_20181205235842_F5UC68X_KERNAGG_B9" is an undefined name. SQLSTATE=42704 SQLCODE=-204 \[SQL ... 1
'ValueError:Length mismatch: Expected axis has 5 elements, new values have 20 elements'), 1
"OperationalError:(impala.error.OperationalError) TableNotFoundException: Table not found: impala_db.tmp_20181207193148_aj3ecws_ads_imp_1_out\n \[SQL ... 1
KeyError ... 1
'DBAPIError:(impala.error.HiveServer2Error) ImpalaRuntimeException: Error making \'createTable\' RPC to Hive Metastore: \nCAUSED BY: AlreadyExistsException: Table tmp_20181207193148_aj3ecws_ads_imp_1_out already exists\n \[SQL ... 1

62 rows × 1 columns


In [25]:
lGroupBy = df[df.status == 'failure'].groupby(['error_message'])

In [26]:
#lGroupBy['rows'].describe()

In [27]:
lComparisonErrorMessage = '"Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS'
real_errors = df[df.error_message.str.contains(lComparisonErrorMessage)]
real_errors.Model.value_counts()


Out[27]:
Series([], Name: Model, dtype: int64)

In [28]:
lNotImplementedMessage = 'CODE_GENERATION_NOT_IMPLEMENTED_FOR_MODEL'

not_impl_errors = df[df.error_message.str.contains(lNotImplementedMessage)]
not_impl_errors.Model.value_counts()


Out[28]:
MiniBatchSparsePCA           120
SparsePCA                    118
LatentDirichletAllocation     60
NMF                           60
Name: Model, dtype: int64

In [29]:
# database related errors
def is_other_error(x):
    lKnownError = 'SUCCESS' in [x] or lComparisonErrorMessage in [x] or lNotImplementedMessage in [x]
    return not lKnownError

# other_errors = df.error_message.apply(lambda x : 1 if is_other_error(x)  else 0)
other_errors = df[df.error_message.apply(is_other_error)]
other_errors.Model.value_counts()


Out[29]:
caret_class_svmRadialSigma           180
caret_class_svmRadialWeights_pipe    180
caret_class_svmRadialWeights         180
caret_class_svmLinear_pipe           180
caret_class_svmRadialCost            180
caret_class_svmLinear                180
caret_class_svmRadialSigma_pipe      180
caret_class_svmRadialCost_pipe       180
caret_class_svmRadial_pipe           159
caret_class_svmRadial                128
caret_class_svmPoly_pipe             120
caret_class_svmPoly                  120
MiniBatchSparsePCA                   120
SparsePCA                            120
caret_class_nnet_pipe                 98
caret_class_xgbTree_pipe              97
caret_class_nnet                      96
keras_class_SimpleRNN_pipe            95
caret_class_xgbTree                   92
keras_class_SimpleRNN                 85
caret_class_glmnet_pipe               78
caret_class_rf_pipe                   75
keras_class_LSTM_pipe                 75
keras_class_LSTM                      73
caret_class_earth_pipe                71
caret_class_earth                     67
DummyClassifier_pipe                  65
DummyClassifier                       61
NMF                                   60
LatentDirichletAllocation             60
                                    ... 
EllipticEnvelope_pipe                  2
RandomForestRegressor_pipe             2
Perceptron_pipe                        2
caret_reg_earth_pipe                   2
caret_prep_ica                         2
caret_reg_xgbTree                      2
DecisionTreeClassifier_pipe            2
RandomForestRegressor                  2
LinearRegression_pipe                  2
caret_reg_nnet_pipe                    2
PassiveAggressiveClassifier_pipe       2
Lasso_pipe                             1
OneClassSVM_pipe                       1
SGDClassifier                          1
MLPRegressor                           1
RidgeClassifier_pipe                   1
caret_reg_ctree                        1
LassoLars_pipe                         1
MLPRegressor_pipe                      1
RANSACRegressor_pipe                   1
RidgeClassifierCV_pipe                 1
LassoLarsIC_pipe                       1
RidgeClassifierCV                      1
LinearSVC_pipe                         1
Pipeline                               1
GradientBoostingRegressor              1
PassiveAggressiveRegressor_pipe        1
caret_reg_rpart                        1
keras_reg_Dense                        1
ExtraTreeRegressor_pipe                1
Name: Model, Length: 179, dtype: int64

In [30]:
# df.pivot(index = 'Model', values='status' , columns='dialect')

In [31]:
df.columns


Out[31]:
Index(['Model', 'dataset', 'dialect', 'DSN', 'status', 'error_message',
       'elapsed_time', 'full_error_message', 'model_category'],
      dtype='object')

In [32]:
df.head()


Out[32]:
Model dataset dialect DSN status error_message elapsed_time full_error_message model_category
0 LGBMClassifier DS_BENCH_C_50_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None), lightgbm.sklearn
1 LGBMClassifier DS_BENCH_C_50_22_2_2E64DEB6 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None), lightgbm.sklearn
2 LGBMClassifier_pipe p_DS_BENCH_C_50_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None), lightgbm.sklearn
3 LGBMClassifier DS_BENCH_C_200_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None), lightgbm.sklearn
4 LGBMClassifier_pipe p_DS_BENCH_C_50_22_2_2E64DEB6 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', success SUCCESS 3 None), lightgbm.sklearn

In [33]:
df['status'] = df['status'].apply(lambda x : 1 if('failure' in x) else 0)
df['status_2'] = df['status'].apply(lambda x : 1)

In [34]:
df = df[df['model_category'] != 'sklearn.dummy']
df = df[~df['error_message'].str.contains(lNotImplementedMessage)]

In [35]:
df.head()


Out[35]:
Model dataset dialect DSN status error_message elapsed_time full_error_message model_category status_2
0 LGBMClassifier DS_BENCH_C_50_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', 0 SUCCESS 3 None), lightgbm.sklearn 1
1 LGBMClassifier DS_BENCH_C_50_22_2_2E64DEB6 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', 0 SUCCESS 3 None), lightgbm.sklearn 1
2 LGBMClassifier_pipe p_DS_BENCH_C_50_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', 0 SUCCESS 3 None), lightgbm.sklearn 1
3 LGBMClassifier DS_BENCH_C_200_7_2_F2617B35 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', 0 SUCCESS 3 None), lightgbm.sklearn 1
4 LGBMClassifier_pipe p_DS_BENCH_C_50_22_2_2E64DEB6 IBM DB2 'db2+ibm_db://db:db@localhost:50000/db', 0 SUCCESS 3 None), lightgbm.sklearn 1

In [36]:
# How many tests were used for each model category
pvt_count = pd.pivot_table(df, index='model_category', values='status_2' , columns=['dialect'],  aggfunc=[np.sum], margins=True)
pvt_count.head(pvt_count.shape[0])


Out[36]:
sum
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
model_category
caret.classifier 503 503 503 503 503 503 503 503 503 503 5030
caret.preprocessor 36 36 36 36 36 36 36 36 36 36 360
caret.regressor 168 168 168 168 168 168 168 168 168 168 1680
keras.classifier 144 144 144 144 144 144 144 144 144 144 1440
keras.regressor 48 48 48 48 48 48 48 48 48 48 480
lightgbm.sklearn 48 48 48 48 48 48 48 48 48 48 480
sklearn.calibration 36 36 36 36 36 36 36 36 36 36 360
sklearn.covariance 12 12 12 12 12 12 12 12 12 12 120
sklearn.decomposition 72 72 72 72 72 72 72 72 72 74 722
sklearn.discriminant_analysis 36 36 36 36 36 36 36 36 36 36 360
sklearn.ensemble 252 252 252 252 252 252 252 252 252 252 2520
sklearn.feature_selection 108 108 108 108 108 108 108 108 108 108 1080
sklearn.impute 24 24 24 24 24 24 24 24 24 24 240
sklearn.kernel_ridge 12 12 12 12 12 12 12 12 12 12 120
sklearn.linear_model 492 492 492 492 492 492 492 492 492 492 4920
sklearn.multiclass 72 72 72 72 72 72 72 72 72 72 720
sklearn.naive_bayes 144 144 144 144 144 144 144 144 144 144 1440
sklearn.neural_network 48 48 48 48 48 48 48 48 48 48 480
sklearn.pipeline 48 48 48 48 48 48 48 48 48 48 480
sklearn.preprocessing 180 180 180 180 180 180 180 180 180 180 1800
sklearn.random_projection 24 24 24 24 24 24 24 24 24 24 240
sklearn.svm 156 156 156 156 156 156 156 156 156 156 1560
sklearn.tree 96 96 96 96 96 96 96 96 96 96 960
xgboost.sklearn 48 48 48 48 48 48 48 48 48 48 480
All 2807 2807 2807 2807 2807 2807 2807 2807 2807 2809 28072

In [37]:
pvt = pd.pivot_table(df, index='model_category', values='status' , columns=['dialect'],  aggfunc=[np.mean], margins=True)

In [38]:
pvt.head(pvt.shape[0])


Out[38]:
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
model_category
caret.classifier 0.759443 0.495030 0.691849 0.560636 0.481113 0.755467 0.485089 0.461233 0.586481 0.606362 0.588270
caret.preprocessor 0.111111 0.027778 0.000000 0.000000 0.000000 0.000000 0.000000 0.083333 0.027778 0.027778 0.027778
caret.regressor 0.369048 0.011905 0.023810 0.047619 0.011905 0.000000 0.011905 0.029762 0.023810 0.267857 0.079762
keras.classifier 0.291667 0.097222 0.791667 0.222222 0.236111 0.750000 0.097222 0.243056 0.097222 0.118056 0.294444
keras.regressor 0.166667 0.062500 0.750000 0.062500 0.020833 0.750000 0.062500 0.062500 0.062500 0.083333 0.208333
lightgbm.sklearn 0.666667 0.020833 0.625000 0.000000 0.020833 0.416667 0.020833 0.000000 0.000000 0.145833 0.191667
sklearn.calibration 0.138889 0.000000 0.611111 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.083333 0.083333
sklearn.covariance 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.333333 0.183333
sklearn.decomposition 0.222222 0.041667 0.194444 0.027778 0.027778 0.194444 0.027778 0.027778 0.027778 0.202703 0.099723
sklearn.discriminant_analysis 0.111111 0.055556 0.777778 0.027778 0.055556 0.055556 0.055556 0.027778 0.027778 0.138889 0.133333
sklearn.ensemble 0.500000 0.011905 0.361111 0.007937 0.007937 0.091270 0.007937 0.007937 0.007937 0.261905 0.126587
sklearn.feature_selection 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
sklearn.impute 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
sklearn.kernel_ridge 0.750000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.083333 0.083333
sklearn.linear_model 0.032520 0.002033 0.111789 0.004065 0.002033 0.002033 0.002033 0.002033 0.002033 0.028455 0.018902
sklearn.multiclass 0.458333 0.000000 0.500000 0.013889 0.000000 0.000000 0.000000 0.000000 0.000000 0.250000 0.122222
sklearn.naive_bayes 0.395833 0.041667 0.652778 0.027778 0.027778 0.472222 0.027778 0.027778 0.027778 0.138889 0.184028
sklearn.neural_network 0.354167 0.000000 0.479167 0.000000 0.000000 0.333333 0.000000 0.000000 0.000000 0.083333 0.125000
sklearn.pipeline 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.125000 0.012500
sklearn.preprocessing 0.111111 0.088889 0.033333 0.033333 0.033333 0.094444 0.033333 0.022222 0.077778 0.100000 0.062778
sklearn.random_projection 0.166667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.016667
sklearn.svm 0.538462 0.019231 0.282051 0.006410 0.000000 0.076923 0.217949 0.000000 0.000000 0.096154 0.123718
sklearn.tree 0.020833 0.000000 0.000000 0.000000 0.000000 0.000000 0.135417 0.000000 0.000000 0.020833 0.017708
xgboost.sklearn 0.645833 0.020833 0.645833 0.020833 0.020833 0.354167 0.020833 0.020833 0.020833 0.041667 0.181250
All 0.340577 0.109369 0.348415 0.123620 0.106876 0.255077 0.117919 0.105094 0.122551 0.203631 0.183314

In [39]:
df.to_csv('report_extensive_tests.csv')

In [40]:
%matplotlib inline
import matplotlib.pyplot as plt

plt.pcolor(1-pvt, cmap='RdYlGn' , vmin=0 , vmax=1)
plt.yticks(np.arange(0.5, len(pvt.index), 1), pvt.index)
plt.xticks(np.arange(0.5, len(pvt.columns), 1), [col[1] for col in pvt.columns])
fig = plt.gcf()
fig.set_size_inches(16, 8)

plt.show()



In [41]:
Category_Labels = df.model_category.unique()

In [42]:
Category_Labels


Out[42]:
array(['lightgbm.sklearn', 'caret.classifier', 'caret.preprocessor',
       'caret.regressor', 'keras.classifier', 'keras.regressor',
       'sklearn.calibration', 'sklearn.covariance',
       'sklearn.decomposition', 'sklearn.discriminant_analysis',
       'sklearn.ensemble', 'sklearn.feature_selection', 'sklearn.impute',
       'sklearn.kernel_ridge', 'sklearn.linear_model',
       'sklearn.multiclass', 'sklearn.naive_bayes',
       'sklearn.neural_network', 'sklearn.pipeline',
       'sklearn.preprocessing', 'sklearn.random_projection',
       'sklearn.svm', 'sklearn.tree', 'xgboost.sklearn'], dtype=object)

In [43]:
for cat in Category_Labels:
    print("ERROR_REPORT_FOR_CATEGORY" , cat)
    df1 = df[df.model_category == cat]
    real_errors = df1 # df1[df1.error_message != "SUCCESS"]
    if(real_errors.shape[0] > 0):
        msg_by_estim_and_dsn = pd.DataFrame(real_errors.groupby(['dialect'])['error_message'].value_counts())
        from IPython.core.display import display, HTML
        display(msg_by_estim_and_dsn)
        pvt1 = pd.pivot_table(df1, index='Model', values='status' , columns=['dialect'],  aggfunc=[np.mean], margins=True)
        display(pvt1)
    else:
        print("NO_ERROR_FOR_CATEGORY" , cat)


ERROR_REPORT_FOR_CATEGORY lightgbm.sklearn
error_message
dialect error_message
Firebird "DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 27
SUCCESS 16
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while executing SQL statement:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range\', -802, 335544321) \[SQL ... 5
IBM DB2 SUCCESS 47
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
Impala TIMEOUT 22
SUCCESS 18
DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name: ... 8
MS SQL Server SUCCESS 48
MariaDB SUCCESS 47
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
MonetDB SUCCESS 28
TIMEOUT 16
'DBAPIError:(builtins.BrokenPipeError) [Errno 32] Broken pipe , 4
Oracle SUCCESS 47
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
PostgreSQL SUCCESS 48
SQLite SUCCESS 48
Teradata SUCCESS 41
'DatabaseError:(teradata.api.DatabaseError) (2616, \'[22003] [Teradata][ODBC Teradata Driver][Teradata Database](-2616)Numeric overflow occurred during computation.\') \[SQL ... 5
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 1
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
LGBMClassifier 0.833333 0.000000 0.833333 0.0 0.000000 0.555556 0.000000 0.0 0.0 0.166667 0.238889
LGBMClassifier_pipe 0.611111 0.055556 0.833333 0.0 0.055556 0.555556 0.055556 0.0 0.0 0.166667 0.233333
LGBMRegressor 0.500000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.0 0.0 0.000000 0.050000
LGBMRegressor_pipe 0.500000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.0 0.0 0.166667 0.066667
All 0.666667 0.020833 0.625000 0.0 0.020833 0.416667 0.020833 0.0 0.0 0.145833 0.191667
ERROR_REPORT_FOR_CATEGORY caret.classifier
error_message
dialect error_message
Firebird TIMEOUT 216
SUCCESS 121
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 59
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -902\\n- Dynamic SQL Error\\n- Too many Contexts of Relation/Procedure/Views. Maximum allowed is 256\', -902, 335544569) \[SQL ... 35
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while executing SQL statement:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range\', -802, 335544321) \[SQL ... 32
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range', -802, 335544321) , 20
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 13
cTrainingError:Exception:TRAIN_FAILED ... 4
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 3
IBM DB2 SUCCESS 254
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 207
TIMEOUT 32
cTrainingError:Exception:TRAIN_FAILED ... 6
FileNotFoundError ... 2
IndexError ... 2
Impala TIMEOUT 241
SUCCESS 155
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 78
DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name: ... 16
cTrainingError:Exception:TRAIN_FAILED ... 13
MS SQL Server SUCCESS 221
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 210
TIMEOUT 40
"OperationalError:(pymssql.OperationalError) (125, b'Case expressions may only be nested to level 10.DB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages from the SQL Server\\nDB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages from the SQL Server\\nDB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages fro 15
cTrainingError:Exception:TRAIN_FAILED ... 12
'OperationalError:(pymssql.OperationalError) (701, b"There is insufficient system memory in resource pool \'default\' to run this query.DB-Lib error message 20018, severity 17:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 2
FileNotFoundError ... 2
"OperationalError:(pymssql.OperationalError) (20004, b'DB-Lib error message 20004, severity 9:\\nRead from the server failed (db:1433)\\nNet-Lib error during Connection reset by peer (104)\\nDB-Lib error message 20002, severity 9:\\nAdaptive Server connection failed (db:1433)\\n') , 1
MariaDB SUCCESS 261
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 197
... ...
FileNotFoundError ... 1
MonetDB TIMEOUT 266
SUCCESS 123
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 111
cTrainingError:Exception:TRAIN_FAILED ... 2
'DBAPIError:(builtins.BrokenPipeError) [Errno 32] Broken pipe , 1
Oracle SUCCESS 259
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 183
TIMEOUT 56
'ValueError:Length mismatch: Expected axis has 20 elements, new values have 5 elements'), 2
'ValueError:Length mismatch: Expected axis has 5 elements, new values have 20 elements'), 1
FileNotFoundError ... 1
IndexError ... 1
PostgreSQL SUCCESS 271
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 219
cTrainingError:Exception:TRAIN_FAILED ... 9
TIMEOUT 3
FileNotFoundError ... 1
SQLite SUCCESS 208
TIMEOUT 161
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 133
FileNotFoundError ... 1
Teradata SUCCESS 198
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 129
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 101
TIMEOUT 60
cTrainingError:Exception:TRAIN_FAILED ... 10
'DatabaseError:(teradata.api.DatabaseError) (2616, \'[22003] [Teradata][ODBC Teradata Driver][Teradata Database](-2616)Numeric overflow occurred during computation.\') \[SQL ... 2
'DatabaseError:(teradata.api.DatabaseError) (3710, \'[HY001] [Teradata][ODBC Teradata Driver][Teradata Database](-3710)Insufficient memory to parse this request, during queryrewrite phase.\') \[SQL ... 2
'DatabaseError:(teradata.api.DatabaseError) (3710, \'[HY001] [Teradata][ODBC Teradata Driver][Teradata Database](-3710)Insufficient memory to parse this request, during optimizer phase.\') \[SQL ... 1

62 rows × 1 columns

mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
caret_class_ctree 0.444444 0.000000 0.000000 0.000000 0.000000 0.388889 0.166667 0.111111 0.222222 0.055556 0.138889
caret_class_ctree2 0.388889 0.500000 0.000000 0.500000 0.000000 0.388889 0.166667 0.000000 0.000000 0.000000 0.194444
caret_class_ctree2_pipe 0.444444 0.500000 0.333333 1.000000 0.000000 0.444444 0.111111 0.000000 0.000000 0.000000 0.283333
caret_class_ctree_pipe 0.555556 0.000000 0.055556 0.000000 0.055556 0.500000 0.111111 0.000000 0.388889 0.055556 0.172222
caret_class_earth 0.611111 0.166667 0.777778 0.333333 0.222222 0.555556 0.166667 0.166667 0.388889 0.333333 0.372222
caret_class_earth_pipe 0.611111 0.166667 0.777778 0.277778 0.277778 0.611111 0.166667 0.166667 0.555556 0.333333 0.394444
caret_class_glm 0.000000 0.000000 0.500000 0.166667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.066667
caret_class_glm_pipe 0.500000 0.333333 0.500000 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.366667
caret_class_glmnet 0.555556 0.000000 0.722222 0.166667 0.055556 0.777778 0.000000 0.000000 0.111111 0.611111 0.300000
caret_class_glmnet_pipe 0.722222 0.166667 0.833333 0.166667 0.166667 0.888889 0.111111 0.111111 0.444444 0.722222 0.433333
caret_class_nnet 0.833333 0.333333 0.777778 0.333333 0.444444 0.888889 0.333333 0.333333 0.555556 0.500000 0.533333
caret_class_nnet_pipe 0.833333 0.333333 0.833333 0.333333 0.388889 0.888889 0.333333 0.333333 0.666667 0.500000 0.544444
caret_class_rf 0.555556 0.000000 0.555556 0.444444 0.000000 0.388889 0.000000 0.000000 0.055556 0.833333 0.283333
caret_class_rf_pipe 0.611111 0.111111 0.611111 0.500000 0.166667 0.555556 0.111111 0.111111 0.444444 0.944444 0.416667
caret_class_rpart 0.444444 0.055556 0.000000 0.000000 0.000000 0.388889 0.055556 0.000000 0.000000 0.000000 0.094444
caret_class_rpart_pipe 0.555556 0.000000 0.000000 0.000000 0.055556 0.500000 0.111111 0.000000 0.277778 0.055556 0.155556
caret_class_svmLinear 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
caret_class_svmLinear_pipe 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
caret_class_svmPoly 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
caret_class_svmPoly_pipe 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
caret_class_svmRadial 0.941176 0.647059 0.823529 0.705882 0.705882 0.823529 0.705882 0.705882 0.764706 0.705882 0.752941
caret_class_svmRadialCost 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
caret_class_svmRadialCost_pipe 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
caret_class_svmRadialSigma 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
caret_class_svmRadialSigma_pipe 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
caret_class_svmRadialWeights 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
caret_class_svmRadialWeights_pipe 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
caret_class_svmRadial_pipe 1.000000 0.777778 0.944444 0.777778 0.833333 0.944444 0.833333 0.777778 0.944444 1.000000 0.883333
caret_class_xgbTree 0.833333 0.333333 0.833333 0.333333 0.333333 0.888889 0.333333 0.333333 0.500000 0.388889 0.511111
caret_class_xgbTree_pipe 0.833333 0.333333 0.833333 0.333333 0.333333 0.888889 0.333333 0.333333 0.666667 0.500000 0.538889
All 0.759443 0.495030 0.691849 0.560636 0.481113 0.755467 0.485089 0.461233 0.586481 0.606362 0.588270
ERROR_REPORT_FOR_CATEGORY caret.preprocessor
error_message
dialect error_message
Firebird SUCCESS 32
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 4
IBM DB2 SUCCESS 35
Exception:PREDICT_FAILED ... 1
Impala SUCCESS 36
MS SQL Server SUCCESS 36
MariaDB SUCCESS 36
MonetDB SUCCESS 36
Oracle SUCCESS 36
PostgreSQL SUCCESS 33
Exception:PREDICT_FAILED ... 3
SQLite SUCCESS 35
Exception:PREDICT_FAILED ... 1
Teradata SUCCESS 35
Exception:PREDICT_FAILED ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
caret_prep_center_scale 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.250000 0.000000 0.000000 0.025000
caret_prep_ica 0.000000 0.083333 0.0 0.0 0.0 0.0 0.0 0.000000 0.083333 0.000000 0.016667
caret_prep_pca 0.333333 0.000000 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.083333 0.041667
All 0.111111 0.027778 0.0 0.0 0.0 0.0 0.0 0.083333 0.027778 0.027778 0.027778
ERROR_REPORT_FOR_CATEGORY caret.regressor
error_message
dialect error_message
Firebird SUCCESS 106
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 46
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range', -802, 335544321) , 15
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 1
IBM DB2 SUCCESS 166
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
Impala SUCCESS 164
cTrainingError:Exception:TRAIN_FAILED ... 4
MS SQL Server SUCCESS 160
"OperationalError:(pymssql.OperationalError) (125, b'Case expressions may only be nested to level 10.DB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages from the SQL Server\\nDB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages from the SQL Server\\nDB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages fro 8
MariaDB SUCCESS 166
cTrainingError:Exception:TRAIN_FAILED ... 2
MonetDB SUCCESS 168
Oracle SUCCESS 166
cTrainingError:Exception:TRAIN_FAILED ... 2
PostgreSQL SUCCESS 163
cTrainingError:Exception:TRAIN_FAILED ... 4
KeyError ... 1
SQLite SUCCESS 164
cTrainingError:Exception:TRAIN_FAILED ... 2
'ValueError:Length mismatch: Expected axis has 20 elements, new values have 5 elements'), 1
TIMEOUT 1
Teradata SUCCESS 123
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 30
cTrainingError:Exception:TRAIN_FAILED ... 6
'DatabaseError:(teradata.api.DatabaseError) (2616, \'[22003] [Teradata][ODBC Teradata Driver][Teradata Database](-2616)Numeric overflow occurred during computation.\') \[SQL ... 4
'DatabaseError:(teradata.api.DatabaseError) (3710, \'[HY001] [Teradata][ODBC Teradata Driver][Teradata Database](-3710)Insufficient memory to parse this request, during optimizer phase.\') \[SQL ... 3
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
caret_reg_ctree 0.000000 0.000000 0.166667 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.016667
caret_reg_ctree2 0.000000 0.000000 0.166667 0.000000 0.000000 0.0 0.000000 0.000000 0.166667 0.000000 0.033333
caret_reg_ctree2_pipe 0.333333 0.000000 0.166667 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.050000
caret_reg_ctree_pipe 0.333333 0.000000 0.166667 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.050000
caret_reg_earth 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000
caret_reg_earth_pipe 0.333333 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.033333
caret_reg_glm 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000
caret_reg_glm_pipe 0.333333 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.033333
caret_reg_glmnet 0.000000 0.000000 0.000000 0.000000 0.166667 0.0 0.166667 0.000000 0.000000 0.000000 0.033333
caret_reg_glmnet_pipe 0.333333 0.000000 0.000000 0.000000 0.166667 0.0 0.166667 0.000000 0.000000 0.000000 0.066667
caret_reg_nnet 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.000000
caret_reg_nnet_pipe 0.333333 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.033333
caret_reg_rf 0.000000 0.000000 0.000000 0.500000 0.000000 0.0 0.000000 0.000000 0.000000 0.666667 0.116667
caret_reg_rf_pipe 0.333333 0.000000 0.000000 0.833333 0.000000 0.0 0.000000 0.000000 0.000000 0.666667 0.183333
caret_reg_rpart 0.000000 0.166667 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.016667
caret_reg_rpart_pipe 0.333333 0.166667 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.000000 0.050000
caret_reg_svmLinear 0.500000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.166667 0.000000 0.333333 0.100000
caret_reg_svmLinear_pipe 0.666667 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 1.000000 0.166667
caret_reg_svmPoly 0.500000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.166667 0.066667
caret_reg_svmPoly_pipe 0.833333 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.166667 1.000000 0.200000
caret_reg_svmRadial 0.833333 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.166667 0.100000
caret_reg_svmRadialCost 0.666667 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.166667 0.333333 0.116667
caret_reg_svmRadialCost_pipe 0.666667 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.166667 1.000000 0.183333
caret_reg_svmRadialSigma 0.833333 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 0.166667 0.100000
caret_reg_svmRadialSigma_pipe 0.833333 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 1.000000 0.183333
caret_reg_svmRadial_pipe 0.833333 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.000000 1.000000 0.183333
caret_reg_xgbTree 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.333333 0.000000 0.000000 0.033333
caret_reg_xgbTree_pipe 0.500000 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.333333 0.000000 0.000000 0.083333
All 0.369048 0.011905 0.023810 0.047619 0.011905 0.0 0.011905 0.029762 0.023810 0.267857 0.079762
ERROR_REPORT_FOR_CATEGORY keras.classifier
error_message
dialect error_message
Firebird SUCCESS 102
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 30
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 11
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
IBM DB2 SUCCESS 130
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 13
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
Impala Exception:CODE_GENERATION_DATABASE_NOT_SUPPORTED ... 107
SUCCESS 30
TIMEOUT 6
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
MS SQL Server SUCCESS 112
"OperationalError:(pymssql.OperationalError) (8115, b'Arithmetic overflow error converting expression to data type float.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n') \[SQL ... 18
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 13
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
MariaDB SUCCESS 110
'OperationalError:(_mysql_exceptions.OperationalError) (1690, "DOUBLE value is out of range in ... 20
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 13
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
MonetDB Exception:CODE_GENERATION_DATABASE_NOT_SUPPORTED ... 107
SUCCESS 36
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
Oracle SUCCESS 130
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 13
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
PostgreSQL SUCCESS 109
'DataError:(psycopg2.DataError) value out of range: overflow\n \[SQL ... 13
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 13
'DataError:(psycopg2.DataError) value out of range: underflow\n \[SQL ... 8
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
SQLite SUCCESS 130
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 13
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
Teradata SUCCESS 127
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 12
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 4
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
keras_class_Dense 0.277778 0.000000 0.111111 0.000000 0.000000 0.00 0.000000 0.000000 0.000000 0.000000 0.038889
keras_class_Dense_pipe 0.333333 0.000000 0.222222 0.000000 0.000000 0.00 0.000000 0.000000 0.000000 0.055556 0.061111
keras_class_GRU 0.111111 0.000000 1.000000 0.000000 0.000000 1.00 0.000000 0.000000 0.000000 0.000000 0.211111
keras_class_GRU_pipe 0.166667 0.000000 1.000000 0.000000 0.000000 1.00 0.000000 0.000000 0.000000 0.055556 0.222222
keras_class_LSTM 0.166667 0.055556 1.000000 0.555556 0.555556 1.00 0.055556 0.555556 0.055556 0.055556 0.405556
keras_class_LSTM_pipe 0.333333 0.000000 1.000000 0.500000 0.611111 1.00 0.000000 0.666667 0.000000 0.055556 0.416667
keras_class_SimpleRNN 0.388889 0.333333 1.000000 0.333333 0.333333 1.00 0.333333 0.333333 0.333333 0.333333 0.472222
keras_class_SimpleRNN_pipe 0.555556 0.388889 1.000000 0.388889 0.388889 1.00 0.388889 0.388889 0.388889 0.388889 0.527778
All 0.291667 0.097222 0.791667 0.222222 0.236111 0.75 0.097222 0.243056 0.097222 0.118056 0.294444
ERROR_REPORT_FOR_CATEGORY keras.regressor
error_message
dialect error_message
Firebird SUCCESS 40
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 5
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 3
IBM DB2 SUCCESS 45
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 3
Impala Exception:CODE_GENERATION_DATABASE_NOT_SUPPORTED ... 35
SUCCESS 12
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
MS SQL Server SUCCESS 45
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 3
MariaDB SUCCESS 47
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 1
MonetDB Exception:CODE_GENERATION_DATABASE_NOT_SUPPORTED ... 34
SUCCESS 12
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 2
Oracle SUCCESS 45
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 3
PostgreSQL SUCCESS 45
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 3
SQLite SUCCESS 45
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 3
Teradata SUCCESS 44
NAN_VALUE_ENCOUNTERED_IN_MODEL ... 3
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
keras_reg_Dense 0.166667 0.000000 0.00 0.000000 0.000000 0.00 0.000000 0.000000 0.000000 0.000000 0.016667
keras_reg_Dense_pipe 0.333333 0.000000 0.00 0.000000 0.000000 0.00 0.000000 0.000000 0.000000 0.000000 0.033333
keras_reg_GRU 0.000000 0.000000 1.00 0.000000 0.000000 1.00 0.000000 0.000000 0.000000 0.000000 0.200000
keras_reg_GRU_pipe 0.000000 0.000000 1.00 0.000000 0.000000 1.00 0.000000 0.000000 0.000000 0.000000 0.200000
keras_reg_LSTM 0.166667 0.000000 1.00 0.000000 0.000000 1.00 0.000000 0.000000 0.000000 0.166667 0.233333
keras_reg_LSTM_pipe 0.000000 0.000000 1.00 0.000000 0.000000 1.00 0.000000 0.000000 0.000000 0.000000 0.200000
keras_reg_SimpleRNN 0.500000 0.333333 1.00 0.166667 0.000000 1.00 0.333333 0.333333 0.333333 0.333333 0.433333
keras_reg_SimpleRNN_pipe 0.166667 0.166667 1.00 0.333333 0.166667 1.00 0.166667 0.166667 0.166667 0.166667 0.350000
All 0.166667 0.062500 0.75 0.062500 0.020833 0.75 0.062500 0.062500 0.062500 0.083333 0.208333
ERROR_REPORT_FOR_CATEGORY sklearn.calibration
error_message
dialect error_message
Firebird SUCCESS 31
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 5
IBM DB2 SUCCESS 36
Impala SUCCESS 14
DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name: ... 11
TIMEOUT 11
MS SQL Server SUCCESS 36
MariaDB SUCCESS 36
MonetDB SUCCESS 36
Oracle SUCCESS 36
PostgreSQL SUCCESS 36
SQLite SUCCESS 36
Teradata SUCCESS 33
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
CalibratedClassifierCV 0.111111 0.0 0.555556 0.0 0.0 0.0 0.0 0.0 0.0 0.055556 0.072222
CalibratedClassifierCV_pipe 0.166667 0.0 0.666667 0.0 0.0 0.0 0.0 0.0 0.0 0.111111 0.094444
All 0.138889 0.0 0.611111 0.0 0.0 0.0 0.0 0.0 0.0 0.083333 0.083333
ERROR_REPORT_FOR_CATEGORY sklearn.covariance
error_message
dialect error_message
Firebird SUCCESS 10
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 2
IBM DB2 SUCCESS 10
'InternalError:(ibm_db_dbi.InternalError) ibm_db_dbi::InternalError: SQLNumResultCols failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0973N Not enough storage is available in the "AGENT_STACK_SZ" heap or stack to process the statement. SQLSTATE=57011 SQLCODE=-973 \[SQL ... 2
Impala SUCCESS 10
"DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Exceeded the maximum depth of an expression tree (1000).\n \[SQL ... 2
MS SQL Server SUCCESS 10
"OperationalError:(pymssql.OperationalError) (8631, b'Internal error: Server stack limit has been reached. Please look for potentially deep nesting in your query, and try to simplify it.DB-Lib error message 20018, severity 17:\\nGeneral SQL Server error: Check messages from the SQL Server\\n') \[SQL ... 2
MariaDB SUCCESS 10
'OperationalError:(_mysql_exceptions.OperationalError) (1436, "Thread stack overrun: 1238176 bytes used of a 1269760 byte stack, and 32000 bytes needed. Use \'mysqld --thread_stack=#\' to specify a bigger stack") \[SQL ... 2
MonetDB SUCCESS 10
'DBAPIError:(builtins.BrokenPipeError) [Errno 32] Broken pipe , 2
Oracle SUCCESS 10
TIMEOUT 2
PostgreSQL SUCCESS 10
'OperationalError:(psycopg2.OperationalError) stack depth limit exceeded\nHINT: Increase the configuration parameter "max_stack_depth" (currently 2048kB), after ensuring the platform\'s stack depth limit is adequate.\n \[SQL ... 2
SQLite SUCCESS 10
'OperationalError:(sqlite3.OperationalError) Expression tree is too large (maximum depth 1000) \[SQL ... 2
Teradata SUCCESS 8
TIMEOUT 4
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
EllipticEnvelope 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
EllipticEnvelope_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.333333 0.033333
All 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.333333 0.183333
ERROR_REPORT_FOR_CATEGORY sklearn.decomposition
error_message
dialect error_message
Firebird SUCCESS 56
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 11
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range', -802, 335544321) , 2
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -901\\n- Integer overflow. The result of an integer operation caused the most significant bit of the result to carry.', -901, 335544779) , 2
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Token unknown ... 1
IBM DB2 SUCCESS 69
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
'DBAPIError:(ibm_db_dbi.Error) ibm_db_dbi::Error: [IBM][CLI Driver][DB2/LINUXX8664] SQL0802N Arithmetic overflow or other arithmetic exception occurred. SQLSTATE=22003 SQLCODE=-802 , 1
Impala SUCCESS 58
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 14
MS SQL Server SUCCESS 70
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
MariaDB SUCCESS 70
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
MonetDB SUCCESS 58
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 14
Oracle SUCCESS 70
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
PostgreSQL SUCCESS 70
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
SQLite SUCCESS 70
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
Teradata SUCCESS 59
Exception:CONNECTION_FAILED_WITH_ERROR ... 7
'DatabaseError:(teradata.api.DatabaseError) (2616, \'[22003] [Teradata][ODBC Teradata Driver][Teradata Database](-2616)Numeric overflow occurred during computation.\') \[SQL ... 4
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
TIMEOUT 2
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
FactorAnalysis 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.100000
FastICA 0.333333 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.183333
IncrementalPCA 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.416667 0.041667
KernelPCA 1.000000 0.083333 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 0.258333
PCA 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
SparsePCA NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.000000 1.000000
TruncatedSVD 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
All 0.222222 0.041667 0.194444 0.027778 0.027778 0.194444 0.027778 0.027778 0.027778 0.202703 0.099723
ERROR_REPORT_FOR_CATEGORY sklearn.discriminant_analysis
error_message
dialect error_message
Firebird SUCCESS 32
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -901\\n- request size limit exceeded\', -901, 335544382) \[SQL ... 2
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 1
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
IBM DB2 SUCCESS 34
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
Impala TIMEOUT 26
SUCCESS 8
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
MS SQL Server SUCCESS 35
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
MariaDB SUCCESS 34
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
MonetDB SUCCESS 34
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
Oracle SUCCESS 34
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
PostgreSQL SUCCESS 35
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
SQLite SUCCESS 35
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
Teradata SUCCESS 31
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
TIMEOUT 2
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
LinearDiscriminantAnalysis 0.111111 0.000000 0.722222 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.111111 0.094444
LinearDiscriminantAnalysis_pipe 0.111111 0.111111 0.833333 0.055556 0.111111 0.111111 0.111111 0.055556 0.055556 0.166667 0.172222
All 0.111111 0.055556 0.777778 0.027778 0.055556 0.055556 0.055556 0.027778 0.027778 0.138889 0.133333
ERROR_REPORT_FOR_CATEGORY sklearn.ensemble
error_message
dialect error_message
Firebird SUCCESS 126
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 90
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while executing SQL statement:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range\', -802, 335544321) \[SQL ... 22
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 9
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Token unknown ... 3
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -902\\n- Dynamic SQL Error\\n- Too many Contexts of Relation/Procedure/Views. Maximum allowed is 256\', -902, 335544569) \[SQL ... 1
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
IBM DB2 SUCCESS 249
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 3
Impala SUCCESS 161
DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name: ... 55
TIMEOUT 32
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
"OperationalError:(impala.error.OperationalError) TableNotFoundException: Table not found: impala_db.tmp_20181207193148_aj3ecws_ads_imp_1_out\n \[SQL ... 1
'DBAPIError:(impala.error.HiveServer2Error) ImpalaRuntimeException: Error making \'createTable\' RPC to Hive Metastore: \nCAUSED BY: AlreadyExistsException: Table tmp_20181207193148_aj3ecws_ads_imp_1_out already exists\n \[SQL ... 1
MS SQL Server SUCCESS 250
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
MariaDB SUCCESS 250
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
MonetDB SUCCESS 229
TIMEOUT 16
'DBAPIError:(builtins.BrokenPipeError) [Errno 32] Broken pipe , 4
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 3
Oracle SUCCESS 250
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
PostgreSQL SUCCESS 250
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
SQLite SUCCESS 250
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 2
Teradata SUCCESS 186
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 55
'DatabaseError:(teradata.api.DatabaseError) (2616, \'[22003] [Teradata][ODBC Teradata Driver][Teradata Database](-2616)Numeric overflow occurred during computation.\') \[SQL ... 6
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 5
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
AdaBoostClassifier 0.944444 0.000000 0.555556 0.000000 0.000000 0.111111 0.000000 0.000000 0.000000 0.333333 0.194444
AdaBoostClassifier_pipe 0.888889 0.055556 0.666667 0.000000 0.000000 0.166667 0.000000 0.000000 0.000000 0.444444 0.222222
AdaBoostRegressor 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
AdaBoostRegressor_pipe 0.666667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.066667
BaggingClassifier 0.444444 0.000000 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.277778 0.105556
BaggingClassifier_pipe 0.222222 0.000000 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.277778 0.083333
BaggingRegressor 0.666667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.066667
BaggingRegressor_pipe 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.033333
ExtraTreesClassifier 0.388889 0.000000 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.555556 0.127778
ExtraTreesClassifier_pipe 0.444444 0.111111 0.444444 0.111111 0.111111 0.111111 0.111111 0.111111 0.111111 0.777778 0.244444
ExtraTreesRegressor 0.666667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.066667
ExtraTreesRegressor_pipe 0.500000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.166667 0.066667
GradientBoostingClassifier 0.722222 0.000000 0.777778 0.000000 0.000000 0.444444 0.000000 0.000000 0.000000 0.000000 0.194444
GradientBoostingClassifier_pipe 0.722222 0.000000 0.833333 0.000000 0.000000 0.444444 0.000000 0.000000 0.000000 0.055556 0.205556
GradientBoostingRegressor 0.166667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.016667
GradientBoostingRegressor_pipe 0.500000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.050000
IsolationForest 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.666667 0.066667
IsolationForest_pipe 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.666667 0.100000
RandomForestClassifier 0.388889 0.000000 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.222222 0.094444
RandomForestClassifier_pipe 0.333333 0.000000 0.444444 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.222222 0.100000
RandomForestRegressor 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.033333
RandomForestRegressor_pipe 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.033333
All 0.500000 0.011905 0.361111 0.007937 0.007937 0.091270 0.007937 0.007937 0.007937 0.261905 0.126587
ERROR_REPORT_FOR_CATEGORY sklearn.feature_selection
error_message
dialect error_message
Firebird SUCCESS 108
IBM DB2 SUCCESS 108
Impala SUCCESS 108
MS SQL Server SUCCESS 108
MariaDB SUCCESS 108
MonetDB SUCCESS 108
Oracle SUCCESS 108
PostgreSQL SUCCESS 108
SQLite SUCCESS 108
Teradata SUCCESS 108
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
GenericUnivariateSelect 0 0 0 0 0 0 0 0 0 0 0
RFE 0 0 0 0 0 0 0 0 0 0 0
RFECV 0 0 0 0 0 0 0 0 0 0 0
SelectFdr 0 0 0 0 0 0 0 0 0 0 0
SelectFpr 0 0 0 0 0 0 0 0 0 0 0
SelectFromModel 0 0 0 0 0 0 0 0 0 0 0
SelectFwe 0 0 0 0 0 0 0 0 0 0 0
SelectKBest 0 0 0 0 0 0 0 0 0 0 0
SelectPercentile 0 0 0 0 0 0 0 0 0 0 0
All 0 0 0 0 0 0 0 0 0 0 0
ERROR_REPORT_FOR_CATEGORY sklearn.impute
error_message
dialect error_message
Firebird SUCCESS 24
IBM DB2 SUCCESS 24
Impala SUCCESS 24
MS SQL Server SUCCESS 24
MariaDB SUCCESS 24
MonetDB SUCCESS 24
Oracle SUCCESS 24
PostgreSQL SUCCESS 24
SQLite SUCCESS 24
Teradata SUCCESS 24
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
MissingIndicator 0 0 0 0 0 0 0 0 0 0 0
SimpleImputer 0 0 0 0 0 0 0 0 0 0 0
All 0 0 0 0 0 0 0 0 0 0 0
ERROR_REPORT_FOR_CATEGORY sklearn.kernel_ridge
error_message
dialect error_message
Firebird "DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range', -802, 335544321) , 6
SUCCESS 3
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 2
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Token unknown ... 1
IBM DB2 SUCCESS 12
Impala SUCCESS 12
MS SQL Server SUCCESS 12
MariaDB SUCCESS 12
MonetDB SUCCESS 12
Oracle SUCCESS 12
PostgreSQL SUCCESS 12
SQLite SUCCESS 12
Teradata SUCCESS 11
'DatabaseError:(teradata.api.DatabaseError) (3710, \'[HY001] [Teradata][ODBC Teradata Driver][Teradata Database](-3710)Insufficient memory to parse this request, during optimizer phase.\') \[SQL ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
KernelRidge 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.166667 0.116667
KernelRidge_pipe 0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.050000
All 0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.083333 0.083333
ERROR_REPORT_FOR_CATEGORY sklearn.linear_model
error_message
dialect error_message
Firebird SUCCESS 476
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 10
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -901\\n- request size limit exceeded\', -901, 335544382) \[SQL ... 4
TIMEOUT 1
cTrainingError ... 1
IBM DB2 SUCCESS 491
cTrainingError ... 1
Impala SUCCESS 437
TIMEOUT 54
cTrainingError ... 1
MS SQL Server SUCCESS 490
'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \'##TMP_20181206005156_H92RC4Z_ADS_imp_1_OUT\' in the database.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 1
cTrainingError ... 1
MariaDB SUCCESS 491
cTrainingError ... 1
MonetDB SUCCESS 491
cTrainingError ... 1
Oracle SUCCESS 491
cTrainingError ... 1
PostgreSQL SUCCESS 491
cTrainingError ... 1
SQLite SUCCESS 491
cTrainingError ... 1
Teradata SUCCESS 478
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 7
TIMEOUT 6
cTrainingError ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
ARDRegression 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ARDRegression_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
BayesianRidge 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
BayesianRidge_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ElasticNet 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ElasticNetCV 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ElasticNetCV_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ElasticNet_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Lars 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LarsCV 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LarsCV_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Lars_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Lasso 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LassoCV 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LassoCV_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LassoLars 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LassoLarsCV 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LassoLarsCV_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LassoLarsIC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LassoLarsIC_pipe 0.166667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.016667
LassoLars_pipe 0.166667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.016667
Lasso_pipe 0.166667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.016667
LinearRegression 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LinearRegression_pipe 0.166667 0.000000 0.000000 0.166667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.033333
LogisticRegression 0.111111 0.000000 0.722222 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.083333
LogisticRegressionCV 0.166667 0.000000 0.722222 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.088889
LogisticRegressionCV_pipe 0.000000 0.000000 0.722222 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055556 0.077778
LogisticRegression_pipe 0.055556 0.000000 0.722222 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055556 0.083333
OrthogonalMatchingPursuit 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
OrthogonalMatchingPursuitCV 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
OrthogonalMatchingPursuitCV_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
OrthogonalMatchingPursuit_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
PassiveAggressiveClassifier 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
PassiveAggressiveClassifier_pipe 0.055556 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055556 0.011111
PassiveAggressiveRegressor 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
PassiveAggressiveRegressor_pipe 0.166667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.016667
Perceptron 0.000000 0.000000 0.055556 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.111111 0.016667
Perceptron_pipe 0.000000 0.000000 0.055556 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055556 0.011111
RANSACRegressor 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667
RANSACRegressor_pipe 0.166667 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.016667
Ridge 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RidgeCV 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RidgeCV_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RidgeClassifier 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.111111 0.011111
RidgeClassifierCV 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055556 0.005556
RidgeClassifierCV_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055556 0.005556
RidgeClassifier_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055556 0.005556
Ridge_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
SGDClassifier 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055556 0.005556
SGDClassifier_pipe 0.111111 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.055556 0.016667
SGDRegressor 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
SGDRegressor_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
TheilSenRegressor 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
TheilSenRegressor_pipe 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
All 0.032520 0.002033 0.111789 0.004065 0.002033 0.002033 0.002033 0.002033 0.002033 0.028455 0.018902
ERROR_REPORT_FOR_CATEGORY sklearn.multiclass
error_message
dialect error_message
Firebird SUCCESS 39
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 19
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -902\\n- Dynamic SQL Error\\n- Too many Contexts of Relation/Procedure/Views. Maximum allowed is 256\', -902, 335544569) \[SQL ... 14
IBM DB2 SUCCESS 72
Impala SUCCESS 36
TIMEOUT 23
DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name: ... 12
'DBAPIError:(impala.error.HiveServer2Error) ExecQueryFInstances rpc query_id=16432345ede1bdbc:cf2b999500000000 failed: Failed to get minimum memory reservation of 1.73 GB on daemon cloudera:22000 for query 16432345ede1bdbc:cf2b999500000000 because it would exceed an applicable memory limit. Memory is likely oversubscribed. Reducing query concurrency or configuring admission control may help avoid 1
MS SQL Server SUCCESS 71
'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \'##TMP_20181206010532_OEPNFRI_OVR_Score_1\' in the database.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 1
MariaDB SUCCESS 72
MonetDB SUCCESS 72
Oracle SUCCESS 72
PostgreSQL SUCCESS 72
SQLite SUCCESS 72
Teradata SUCCESS 54
Exception:CONNECTION_FAILED_WITH_ERROR ... 16
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 2
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
OneVsOneClassifier 0.666667 0.0 0.388889 0.000000 0.0 0.0 0.0 0.0 0.0 0.222222 0.127778
OneVsOneClassifier_pipe 0.444444 0.0 0.444444 0.000000 0.0 0.0 0.0 0.0 0.0 0.277778 0.116667
OneVsRestClassifier 0.333333 0.0 0.555556 0.000000 0.0 0.0 0.0 0.0 0.0 0.222222 0.111111
OneVsRestClassifier_pipe 0.388889 0.0 0.611111 0.055556 0.0 0.0 0.0 0.0 0.0 0.277778 0.133333
All 0.458333 0.0 0.500000 0.013889 0.0 0.0 0.0 0.0 0.0 0.250000 0.122222
ERROR_REPORT_FOR_CATEGORY sklearn.naive_bayes
error_message
dialect error_message
Firebird SUCCESS 87
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -902\\n- Dynamic SQL Error\\n- Too many Contexts of Relation/Procedure/Views. Maximum allowed is 256\', -902, 335544569) \[SQL ... 40
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 7
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 5
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 4
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Token unknown ... 1
IBM DB2 SUCCESS 138
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 4
'DataError:(ibm_db_dbi.DataError) ibm_db_dbi::DataError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL1585N A temporary table could not be created because there is no available system temporary table space that has a compatible page size. SQLSTATE=54048 SQLCODE=-1585 \[SQL ... 2
Impala TIMEOUT 82
SUCCESS 50
DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name: ... 8
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 4
MS SQL Server SUCCESS 140
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 3
'OperationalError:(pymssql.OperationalError) (2714, b"There is already an object named \'##TMP_20181206010237_ZWPX1VH_ADS_imp_1_OUT\' in the database.DB-Lib error message 20018, severity 16:\\nGeneral SQL Server error: Check messages from the SQL Server\\n") \[SQL ... 1
MariaDB SUCCESS 140
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 4
MonetDB SUCCESS 76
TIMEOUT 52
'DBAPIError:(builtins.BrokenPipeError) [Errno 32] Broken pipe , 12
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 4
Oracle SUCCESS 140
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 4
PostgreSQL SUCCESS 140
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 4
SQLite SUCCESS 140
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 4
Teradata SUCCESS 124
TIMEOUT 14
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 4
'DatabaseError:(teradata.api.DatabaseError) (3710, \'[HY001] [Teradata][ODBC Teradata Driver][Teradata Database](-3710)Insufficient memory to parse this request, during queryrewrite phase.\') \[SQL ... 1
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
BernoulliNB 0.333333 0.000000 0.555556 0.000000 0.000000 0.444444 0.000000 0.000000 0.000000 0.222222 0.155556
BernoulliNB_pipe 0.388889 0.000000 0.555556 0.000000 0.000000 0.444444 0.000000 0.000000 0.000000 0.222222 0.161111
ComplementNB 0.444444 0.111111 0.666667 0.111111 0.111111 0.666667 0.111111 0.111111 0.111111 0.111111 0.255556
ComplementNB_pipe 0.444444 0.111111 0.666667 0.111111 0.111111 0.666667 0.111111 0.111111 0.111111 0.166667 0.261111
GaussianNB 0.500000 0.111111 0.777778 0.000000 0.000000 0.555556 0.000000 0.000000 0.000000 0.333333 0.227778
GaussianNB_pipe 0.388889 0.000000 0.777778 0.000000 0.000000 0.555556 0.000000 0.000000 0.000000 0.055556 0.177778
MultinomialNB 0.333333 0.000000 0.611111 0.000000 0.000000 0.222222 0.000000 0.000000 0.000000 0.000000 0.116667
MultinomialNB_pipe 0.333333 0.000000 0.611111 0.000000 0.000000 0.222222 0.000000 0.000000 0.000000 0.000000 0.116667
All 0.395833 0.041667 0.652778 0.027778 0.027778 0.472222 0.027778 0.027778 0.027778 0.138889 0.184028
ERROR_REPORT_FOR_CATEGORY sklearn.neural_network
error_message
dialect error_message
Firebird SUCCESS 31
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -902\\n- Dynamic SQL Error\\n- Too many Contexts of Relation/Procedure/Views. Maximum allowed is 256\', -902, 335544569) \[SQL ... 12
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 5
IBM DB2 SUCCESS 48
Impala SUCCESS 25
TIMEOUT 23
MS SQL Server SUCCESS 48
MariaDB SUCCESS 48
MonetDB SUCCESS 32
TIMEOUT 16
Oracle SUCCESS 48
PostgreSQL SUCCESS 48
SQLite SUCCESS 48
Teradata SUCCESS 44
TIMEOUT 3
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
MLPClassifier 0.388889 0.0 0.611111 0.0 0.0 0.444444 0.0 0.0 0.0 0.111111 0.155556
MLPClassifier_pipe 0.444444 0.0 0.666667 0.0 0.0 0.444444 0.0 0.0 0.0 0.111111 0.166667
MLPRegressor 0.166667 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.000000 0.016667
MLPRegressor_pipe 0.166667 0.0 0.000000 0.0 0.0 0.000000 0.0 0.0 0.0 0.000000 0.016667
All 0.354167 0.0 0.479167 0.0 0.0 0.333333 0.0 0.0 0.0 0.083333 0.125000
ERROR_REPORT_FOR_CATEGORY sklearn.pipeline
error_message
dialect error_message
Firebird SUCCESS 48
IBM DB2 SUCCESS 48
Impala SUCCESS 48
MS SQL Server SUCCESS 48
MariaDB SUCCESS 48
MonetDB SUCCESS 48
Oracle SUCCESS 48
PostgreSQL SUCCESS 48
SQLite SUCCESS 48
Teradata SUCCESS 42
TIMEOUT 5
Exception:CONNECTION_FAILED_WITH_ERROR ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
FeatureUnion 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000
Pipeline 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.055556 0.005556
Pipeline_pipe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.277778 0.027778
All 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.125000 0.012500
ERROR_REPORT_FOR_CATEGORY sklearn.preprocessing
error_message
dialect error_message
Firebird SUCCESS 160
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 15
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 3
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range', -802, 335544321) , 2
IBM DB2 SUCCESS 164
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 7
'ProgrammingError:(ibm_db_dbi.ProgrammingError) ibm_db_dbi::ProgrammingError: SQLNumResultCols failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0419N A decimal divide operation is not valid because the result would have a negative scale. SQLSTATE=42911 SQLCODE=-419 \[SQL ... 5
'DataError:(ibm_db_dbi.DataError) ibm_db_dbi::DataError: SQLNumResultCols failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0840N Too many items were returned in a SELECT list. SQLSTATE=54004 SQLCODE=-840 \[SQL ... 4
Impala SUCCESS 174
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 6
MS SQL Server SUCCESS 174
"OperationalError:(pymssql.OperationalError) (125, b'Case expressions may only be nested to level 10.DB-Lib error message 20018, severity 15:\\nGeneral SQL Server error: Check messages from the SQL Server\\n') \[SQL ... 6
MariaDB SUCCESS 174
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 6
MonetDB SUCCESS 163
'OperationalError:(pymonetdb.exceptions.OperationalError) Math exception: Numerical argument out of domain\n \[SQL ... 12
'DBAPIError:(builtins.BrokenPipeError) [Errno 32] Broken pipe , 4
TIMEOUT 1
Oracle SUCCESS 174
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 6
PostgreSQL SUCCESS 176
'OperationalError:(psycopg2.OperationalError) target lists can have at most 1664 entries\n \[SQL ... 4
SQLite SUCCESS 166
'OperationalError:(sqlite3.OperationalError) parser stack overflow \[SQL ... 6
'OperationalError:(sqlite3.OperationalError) too many columns in result set \[SQL ... 4
'OperationalError:(sqlite3.OperationalError) too many terms in compound SELECT \[SQL ... 4
Teradata SUCCESS 162
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 9
"DatabaseError:(teradata.api.DatabaseError) (10670, '[07009] [Teradata][ODBC] (10670) Invalid descriptor index, descriptor record does not exist, or descriptor record was not properly initialized.') , 4
TIMEOUT 4
'DatabaseError:(teradata.api.DatabaseError) (5639, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-5639)Request size exceeds Parser limit of 1048500 bytes.\') \[SQL ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
Binarizer 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
KBinsDiscretizer 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LabelBinarizer 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
LabelEncoder 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
MaxAbsScaler 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
MinMaxScaler 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Normalizer 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
OneHotEncoder 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
OrdinalEncoder 0.500000 0.500000 0.500000 0.500000 0.500000 0.083333 0.500000 0.000000 0.500000 0.500000 0.408333
PolynomialFeatures 0.333333 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000 0.333333 0.333333 0.333333 0.166667
PowerTransformer 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.100000
QuantileTransformer 0.833333 0.500000 0.000000 0.000000 0.000000 0.333333 0.000000 0.000000 0.333333 0.666667 0.266667
RobustScaler 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
StandardScaler 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
All 0.111111 0.088889 0.033333 0.033333 0.033333 0.094444 0.033333 0.022222 0.077778 0.100000 0.062778
ERROR_REPORT_FOR_CATEGORY sklearn.random_projection
error_message
dialect error_message
Firebird SUCCESS 20
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range', -802, 335544321) , 3
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -901\\n- Integer overflow. The result of an integer operation caused the most significant bit of the result to carry.', -901, 335544779) , 1
IBM DB2 SUCCESS 24
Impala SUCCESS 24
MS SQL Server SUCCESS 24
MariaDB SUCCESS 24
MonetDB SUCCESS 24
Oracle SUCCESS 24
PostgreSQL SUCCESS 24
SQLite SUCCESS 24
Teradata SUCCESS 24
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
GaussianRandomProjection 0.333333 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.033333
SparseRandomProjection 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000
All 0.166667 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.016667
ERROR_REPORT_FOR_CATEGORY sklearn.svm
error_message
dialect error_message
Firebird SUCCESS 72
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while executing SQL statement:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range\', -802, 335544321) \[SQL ... 29
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -104\\n- Dynamic SQL Error\\n- SQL error code = -104\\n- Unexpected end of command ... 22
"DatabaseError:(fdb.fbcore.DatabaseError) ('Cursor.fetchone:\\n- SQLCODE: -802\\n- arithmetic exception, numeric overflow, or string truncation\\n- numeric value is out of range', -802, 335544321) , 21
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 12
IBM DB2 SUCCESS 153
'ProgrammingError:(ibm_db_dbi.ProgrammingError) ibm_db_dbi::ProgrammingError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0204N "DB.TMP_20181205235842_F5UC68X_KERNAGG_B9" is an undefined name. SQLSTATE=42704 SQLCODE=-204 \[SQL ... 1
'ProgrammingError:(ibm_db_dbi.ProgrammingError) ibm_db_dbi::ProgrammingError: Statement Execute Failed: [IBM][CLI Driver][DB2/LINUXX8664] SQL0601N The name of the object to be created is identical to the existing name "DB.TMP_20181205235842_F5UC68X_KERNAGG_B9" of type "CREATE TEMPORARY TABLE". SQLSTATE=42710 SQLCODE=-601 \[SQL ... 1
TIMEOUT 1
Impala SUCCESS 112
TIMEOUT 44
MS SQL Server SUCCESS 155
TIMEOUT 1
MariaDB SUCCESS 156
MonetDB SUCCESS 144
TIMEOUT 8
'DBAPIError:(builtins.BrokenPipeError) [Errno 32] Broken pipe , 3
Exception:CONNECTION_FAILED_WITH_ERROR ... 1
Oracle SUCCESS 122
TIMEOUT 34
PostgreSQL SUCCESS 156
SQLite SUCCESS 156
Teradata SUCCESS 141
TIMEOUT 12
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 2
'DatabaseError:(teradata.api.DatabaseError) (3710, \'[HY001] [Teradata][ODBC Teradata Driver][Teradata Database](-3710)Insufficient memory to parse this request, during optimizer phase.\') \[SQL ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
LinearSVC 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.0 0.000000 0.000000
LinearSVC_pipe 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.0 0.055556 0.005556
LinearSVR 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.0 0.000000 0.000000
LinearSVR_pipe 0.000000 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.0 0.000000 0.000000
NuSVC 0.777778 0.055556 0.611111 0.000000 0.0 0.166667 0.555556 0.0 0.0 0.277778 0.244444
NuSVC_pipe 0.833333 0.055556 0.611111 0.000000 0.0 0.055556 0.388889 0.0 0.0 0.055556 0.200000
NuSVR 1.000000 0.000000 0.000000 0.000000 0.0 0.166667 0.000000 0.0 0.0 0.000000 0.116667
NuSVR_pipe 0.333333 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.0 0.000000 0.033333
OneClassSVM 0.833333 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.0 0.000000 0.083333
OneClassSVM_pipe 0.166667 0.000000 0.000000 0.000000 0.0 0.000000 0.000000 0.0 0.0 0.000000 0.016667
SVC 0.888889 0.055556 0.611111 0.055556 0.0 0.166667 0.555556 0.0 0.0 0.277778 0.261111
SVC_pipe 0.833333 0.000000 0.611111 0.000000 0.0 0.055556 0.388889 0.0 0.0 0.111111 0.200000
SVR 1.000000 0.000000 0.000000 0.000000 0.0 0.166667 0.000000 0.0 0.0 0.166667 0.133333
SVR_pipe 0.666667 0.000000 0.000000 0.000000 0.0 0.333333 0.000000 0.0 0.0 0.000000 0.100000
All 0.538462 0.019231 0.282051 0.006410 0.0 0.076923 0.217949 0.0 0.0 0.096154 0.123718
ERROR_REPORT_FOR_CATEGORY sklearn.tree
error_message
dialect error_message
Firebird SUCCESS 94
"DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 2
IBM DB2 SUCCESS 96
Impala SUCCESS 96
MS SQL Server SUCCESS 96
MariaDB SUCCESS 96
MonetDB SUCCESS 96
Oracle SUCCESS 83
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 13
PostgreSQL SUCCESS 96
SQLite SUCCESS 96
Teradata SUCCESS 94
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 2
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
DecisionTreeClassifier 0.000000 0.0 0.0 0.0 0.0 0.0 0.000000 0.0 0.0 0.000000 0.000000
DecisionTreeClassifier_pipe 0.055556 0.0 0.0 0.0 0.0 0.0 0.000000 0.0 0.0 0.055556 0.011111
DecisionTreeRegressor 0.000000 0.0 0.0 0.0 0.0 0.0 0.000000 0.0 0.0 0.000000 0.000000
DecisionTreeRegressor_pipe 0.000000 0.0 0.0 0.0 0.0 0.0 0.000000 0.0 0.0 0.000000 0.000000
ExtraTreeClassifier 0.000000 0.0 0.0 0.0 0.0 0.0 0.222222 0.0 0.0 0.000000 0.022222
ExtraTreeClassifier_pipe 0.000000 0.0 0.0 0.0 0.0 0.0 0.500000 0.0 0.0 0.055556 0.055556
ExtraTreeRegressor 0.000000 0.0 0.0 0.0 0.0 0.0 0.000000 0.0 0.0 0.000000 0.000000
ExtraTreeRegressor_pipe 0.166667 0.0 0.0 0.0 0.0 0.0 0.000000 0.0 0.0 0.000000 0.016667
All 0.020833 0.0 0.0 0.0 0.0 0.0 0.135417 0.0 0.0 0.020833 0.017708
ERROR_REPORT_FOR_CATEGORY xgboost.sklearn
error_message
dialect error_message
Firebird "DatabaseError:('Error while commiting transaction:\\n- SQLCODE: -913\\n- deadlock\\n- update conflicts with concurrent update\\n- concurrent transaction number is ... 29
SUCCESS 17
'DatabaseError:(fdb.fbcore.DatabaseError) (\'Error while preparing SQL statement:\\n- SQLCODE: -902\\n- Dynamic SQL Error\\n- Too many Contexts of Relation/Procedure/Views. Maximum allowed is 256\', -902, 335544569) \[SQL ... 1
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
IBM DB2 SUCCESS 47
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
Impala TIMEOUT 23
SUCCESS 17
DBAPIError:(impala.error.HiveServer2Error) AnalysisException: Invalid column/field name: ... 8
MS SQL Server SUCCESS 47
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
MariaDB SUCCESS 47
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
MonetDB SUCCESS 31
TIMEOUT 16
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
Oracle SUCCESS 47
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
PostgreSQL SUCCESS 47
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
SQLite SUCCESS 47
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
Teradata SUCCESS 46
'DatabaseError:(teradata.api.DatabaseError) (3754, \'[HY000] [Teradata][ODBC Teradata Driver][Teradata Database](-3754)Precision error in FLOAT type constant or during implicit conversions.\') \[SQL ... 1
Exception:COMPARISON_FAILURE_TOO_MANY_DIFFS ... 1
mean
dialect Firebird IBM DB2 Impala MS SQL Server MariaDB MonetDB Oracle PostgreSQL SQLite Teradata All
Model
XGBClassifier 0.777778 0.000000 0.833333 0.000000 0.000000 0.444444 0.000000 0.000000 0.000000 0.000000 0.205556
XGBClassifier_pipe 0.611111 0.000000 0.888889 0.000000 0.000000 0.444444 0.000000 0.000000 0.000000 0.055556 0.200000
XGBRegressor 0.500000 0.166667 0.000000 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667 0.183333
XGBRegressor_pipe 0.500000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.050000
All 0.645833 0.020833 0.645833 0.020833 0.020833 0.354167 0.020833 0.020833 0.020833 0.041667 0.181250

In [44]:
df[df.model_category == "bad_category"]


Out[44]:
Model dataset dialect DSN status error_message elapsed_time full_error_message model_category status_2

In [ ]:


In [45]:
def to_float(x):
    try:
        return float(x)
    except:
        # print("PROBLEM_CONVERTING" , x)
        return None

import matplotlib.pyplot as plt
for dialect in dialects:
    print(dialect)
    df1 = df[df.dialect == dialect] # .sample(4000)
    times = df1['elapsed_time'].apply(to_float)
    # times= times[times > 100]
    times.plot(kind='hist' , bins=20)
    plt.show()


IBM DB2
Firebird
Impala
MonetDB
MS SQL Server
MariaDB
Oracle
PostgreSQL
SQLite
Teradata

In [ ]:


In [ ]: