In [1]:
import pandas as pd
import numpy as np

import pyaf.ForecastEngine as autof
import pyaf.Bench.TS_datasets as tsds


%matplotlib inline

In [ ]:


In [2]:
b1 = tsds.load_ozone_exogenous_categorical()
df = b1.mPastData


      Date  Month Exog2 Exog3 Exog4  Ozone       Time  Ozone2
0  1955-01   1955     1    AQ   P_R    2.7 1955-01-01     2.7
1  1955-02   1955     2    AR   P_R    2.0 1955-02-01     2.0
2  1955-03   1955     3    AS   P_S    3.6 1955-03-01     3.6
3  1955-04   1955     4    AT   P_U    5.0 1955-04-01     5.0
4  1955-05   1955     5    AU   P_V    6.5 1955-05-01     6.5

In [3]:
df.head()


Out[3]:
Date Month Exog2 Exog3 Exog4 Ozone Time Ozone2
0 1955-01 1955 1 AQ P_R 2.7 1955-01-01 2.7
1 1955-02 1955 2 AR P_R 2.0 1955-02-01 2.0
2 1955-03 1955 3 AS P_S 3.6 1955-03-01 3.6
3 1955-04 1955 4 AT P_U 5.0 1955-04-01 5.0
4 1955-05 1955 5 AU P_V 6.5 1955-05-01 6.5

In [4]:
df.describe(include=['category'])


Out[4]:
Exog2 Exog3 Exog4
count 204 204 204
unique 12 12 8
top 12 A\ P_S
freq 17 17 47

In [5]:
b1.mExogenousDataFrame.Exog4.cat.categories


Out[5]:
Index(['P_Q', 'P_R', 'P_S', 'P_T', 'P_U', 'P_V', 'P_W', 'P_X'], dtype='object')

In [6]:
import scipy

In [7]:
type(b1.mExogenousDataFrame.Exog3.dtype)


Out[7]:
pandas.core.dtypes.dtypes.CategoricalDtype

In [8]:
b1.mExogenousDataFrame.Exog3.dtype == "category"


Out[8]:
True

In [9]:
b1.mExogenousDataFrame.info()


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 216 entries, 0 to 215
Data columns (total 8 columns):
Date      216 non-null object
Month     216 non-null int64
Exog2     216 non-null category
Exog3     216 non-null category
Exog4     216 non-null category
Ozone     216 non-null float64
Time      216 non-null datetime64[ns]
Ozone2    216 non-null float64
dtypes: category(3), datetime64[ns](1), float64(2), int64(1), object(1)
memory usage: 10.3+ KB

In [10]:
lEngine = autof.cForecastEngine()
lEngine.mOptions.mDebug = True;
#lEngine.mOptions.mDebugProfile = True;
lEngine.mOptions.disable_all_periodics()
lEngine.mOptions.set_active_autoregressions(['ARX'])
lExogenousData = (b1.mExogenousDataFrame , b1.mExogenousVariables) 
lEngine

#lEngine.mOptions.enable_slow_mode()
#lEngine.mOptions.mCycle_Criterion = "L2";
#lEngine.mOptions.mCycle_Criterion_Threshold = 10000.2;


Out[10]:
<pyaf.ForecastEngine.cForecastEngine at 0x7fa0e17ee898>

In [11]:
lEngine.train(df , 'Time' , b1.mSignalVar, 12, lExogenousData)


INFO:pyaf.std:START_TRAINING 'Ozone2'
INFO:pyaf.std:END_TRAINING_TIME_IN_SECONDS 'Ozone2' 8.638344526290894

In [12]:
lEngine.getModelInfo()


INFO:pyaf.std:TIME_DETAIL TimeVariable='Time' TimeMin=1955-01-01T00:00:00.000000 TimeMax=1967-09-01T00:00:00.000000 TimeDelta=30 days Estimation = (0 , 153) Validation = (153 , 192) Test = (192 , 204) Horizon=12
INFO:pyaf.std:SIGNAL_DETAIL SignalVariable='_Ozone2' Min=0.0 Max=26.1  Mean=5.54264705882 StdDev=3.82404606238
INFO:pyaf.std:BEST_TRANSOFORMATION_TYPE '_'
INFO:pyaf.std:BEST_DECOMPOSITION  '_Ozone2_ConstantTrend_residue_zeroCycle_residue_ARX(51)' [ConstantTrend + NoCycle + ARX(51)]
INFO:pyaf.std:TREND_DETAIL '_Ozone2_ConstantTrend' [ConstantTrend]
INFO:pyaf.std:CYCLE_DETAIL '_Ozone2_ConstantTrend_residue_zeroCycle' [NoCycle]
INFO:pyaf.std:AUTOREG_DETAIL '_Ozone2_ConstantTrend_residue_zeroCycle_residue_ARX(51)' [ARX(51)]
INFO:pyaf.std:MODEL_MAPE MAPE_Fit=1155540983.75 MAPE_Forecast=0.3059 MAPE_Test=0.2789
INFO:pyaf.std:MODEL_MASE MASE_Fit=0.4148 MASE_Forecast=0.5234 MASE_Test=0.5512
INFO:pyaf.std:MODEL_L1 L1_Fit=1.74072132203 L1_Forecast=2.06542578835 L1_Test=0.982069337047
INFO:pyaf.std:MODEL_L2 L2_Fit=1.74072132203 L2_Forecast=2.06542578835 L2_Test=1.11755846411
INFO:pyaf.std:MODEL_COMPLEXITY 51
INFO:pyaf.std:AR_MODEL_DETAIL_START
INFO:pyaf.std:AR_MODEL_COEFF 1 Exog3=AT_Lag5 1.6418815066
INFO:pyaf.std:AR_MODEL_COEFF 2 Exog2=3_Lag6 1.6418815066
INFO:pyaf.std:AR_MODEL_COEFF 3 Exog2=2_Lag7 1.6418815066
INFO:pyaf.std:AR_MODEL_COEFF 4 Exog2=4_Lag5 1.6418815066
INFO:pyaf.std:AR_MODEL_COEFF 5 Exog2=5_Lag4 1.6418815066
INFO:pyaf.std:AR_MODEL_COEFF 6 Exog3=AU_Lag4 1.6418815066
INFO:pyaf.std:AR_MODEL_COEFF 7 Exog3=AR_Lag7 1.6418815066
INFO:pyaf.std:AR_MODEL_COEFF 8 Exog3=AS_Lag6 1.6418815066
INFO:pyaf.std:AR_MODEL_COEFF 9 Exog3=AS_Lag42 -1.15781717492
INFO:pyaf.std:AR_MODEL_COEFF 10 Exog2=5_Lag40 -1.15781717492
INFO:pyaf.std:AR_MODEL_DETAIL_END

In [13]:
lEngine.mSignalDecomposition.mExogenousData


Out[13]:
(        Date  Month Exog2 Exog3 Exog4  Ozone       Time  Ozone2
 0    1955-01   1955     1    AQ   P_R    2.7 1955-01-01     2.7
 1    1955-02   1955     2    AR   P_R    2.0 1955-02-01     2.0
 2    1955-03   1955     3    AS   P_S    3.6 1955-03-01     3.6
 3    1955-04   1955     4    AT   P_U    5.0 1955-04-01     5.0
 4    1955-05   1955     5    AU   P_V    6.5 1955-05-01     6.5
 5    1955-06   1955     6    AV   P_V    6.1 1955-06-01     6.1
 6    1955-07   1955     7    AW   P_U    5.9 1955-07-01     5.9
 7    1955-08   1955     8    AX   P_U    5.0 1955-08-01     5.0
 8    1955-09   1955     9    AY   P_V    6.4 1955-09-01    19.2
 9    1955-10   1955    10    AZ   P_W    7.4 1955-10-01     7.4
 10   1955-11   1955    11    A[   P_X    8.2 1955-11-01     8.2
 11   1955-12   1955    12    A\   P_S    3.9 1955-12-01     3.9
 12   1956-01   1956     1    AQ   P_T    4.1 1956-01-01     8.2
 13   1956-02   1956     2    AR   P_T    4.5 1956-02-01     0.0
 14   1956-03   1956     3    AS   P_U    5.5 1956-03-01     0.0
 15   1956-04   1956     4    AT   P_S    3.8 1956-04-01     0.0
 16   1956-05   1956     5    AU   P_T    4.8 1956-05-01     9.6
 17   1956-06   1956     6    AV   P_U    5.6 1956-06-01     5.6
 18   1956-07   1956     7    AW   P_V    6.3 1956-07-01     6.3
 19   1956-08   1956     8    AX   P_U    5.9 1956-08-01     5.9
 20   1956-09   1956     9    AY   P_X    8.7 1956-09-01    26.1
 21   1956-10   1956    10    AZ   P_U    5.3 1956-10-01     5.3
 22   1956-11   1956    11    A[   P_U    5.7 1956-11-01     5.7
 23   1956-12   1956    12    A\   P_U    5.7 1956-12-01     5.7
 24   1957-01   1957     1    AQ   P_S    3.0 1957-01-01     3.0
 25   1957-02   1957     2    AR   P_S    3.4 1957-02-01     3.4
 26   1957-03   1957     3    AS   P_T    4.9 1957-03-01     4.9
 27   1957-04   1957     4    AT   P_T    4.5 1957-04-01     0.0
 28   1957-05   1957     5    AU   P_T    4.0 1957-05-01     4.0
 29   1957-06   1957     6    AV   P_U    5.7 1957-06-01     5.7
 ..       ...    ...   ...   ...   ...    ...        ...     ...
 186  1970-07   1970     7    AW   P_S    3.8 1970-07-01     7.6
 187  1970-08   1970     8    AX   P_T    4.7 1970-08-01     9.4
 188  1970-09   1970     9    AY   P_T    4.6 1970-09-01    13.8
 189  1970-10   1970    10    AZ   P_R    2.9 1970-10-01     2.9
 190  1970-11   1970    11    A[   P_Q    1.7 1970-11-01     3.4
 191  1970-12   1970    12    A\   P_Q    1.3 1970-12-01     2.6
 192  1971-01   1971     1    AQ   P_Q    1.8 1971-01-01     3.6
 193  1971-02   1971     2    AR   P_R    2.0 1971-02-01     2.0
 194  1971-03   1971     3    AS   P_R    2.2 1971-03-01     2.2
 195  1971-04   1971     4    AT   P_S    3.0 1971-04-01     3.0
 196  1971-05   1971     5    AU   P_R    2.4 1971-05-01     4.8
 197  1971-06   1971     6    AV   P_S    3.5 1971-06-01     7.0
 198  1971-07   1971     7    AW   P_S    3.5 1971-07-01     7.0
 199  1971-08   1971     8    AX   P_S    3.3 1971-08-01     6.6
 200  1971-09   1971     9    AY   P_R    2.7 1971-09-01    10.8
 201  1971-10   1971    10    AZ   P_R    2.5 1971-10-01     5.0
 202  1971-11   1971    11    A[   P_Q    1.6 1971-11-01     3.2
 203  1971-12   1971    12    A\   P_Q    1.2 1971-12-01     2.4
 204  1972-01   1972     1    AQ   P_Q    1.5 1972-01-01     3.0
 205  1972-02   1972     2    AR   P_R    2.0 1972-02-01     2.0
 206  1972-03   1972     3    AS   P_S    3.1 1972-03-01     3.1
 207  1972-04   1972     4    AT   P_S    3.0 1972-04-01     3.0
 208  1972-05   1972     5    AU   P_S    3.5 1972-05-01     7.0
 209  1972-06   1972     6    AV   P_S    3.4 1972-06-01     6.8
 210  1972-07   1972     7    AW   P_T    4.0 1972-07-01     8.0
 211  1972-08   1972     8    AX   P_S    3.8 1972-08-01     3.8
 212  1972-09   1972     9    AY   P_S    3.1 1972-09-01    12.4
 213  1972-10   1972    10    AZ   P_R    2.1 1972-10-01     4.2
 214  1972-11   1972    11    A[   P_Q    1.6 1972-11-01     3.2
 215  1972-12   1972    12    A\   P_Q    1.3 1972-12-01     2.6
 
 [216 rows x 8 columns], ['Exog2', 'Exog3', 'Exog4'])

In [14]:
type1 = np.dtype(df.Time)

In [15]:
type1.kind


Out[15]:
'M'

In [16]:
lEngine.mSignalDecomposition.mTrPerfDetails


Out[16]:
Transformation Model Complexity FitCount FitL1 FitL2 FitMAPE FitMASE ForecastCount ForecastL1 ForecastL2 ForecastMAPE ForecastMASE TestCount TestL1 TestL2 TestMAPE TestMASE
0 _Ozone2 _Ozone2_LinearTrend_residue_zeroCycle_residue_... 67 153 1.344360e+00 1.737303e+00 1.173623e+09 4.136000e-01 39 1.474441e+00 2.072040e+00 2.960000e-01 5.188000e-01 12 9.035044e-01 1.054115e+00 2.556000e-01 5.071000e-01
1 _Ozone2 _Ozone2_ConstantTrend_residue_zeroCycle_residu... 51 153 1.348134e+00 1.740721e+00 1.155541e+09 4.148000e-01 39 1.487502e+00 2.065426e+00 3.059000e-01 5.234000e-01 12 9.820693e-01 1.117558e+00 2.789000e-01 5.512000e-01
2 _Ozone2 _Ozone2_PolyTrend_residue_zeroCycle_residue_AR... 67 153 1.343746e+00 1.736364e+00 1.166802e+09 4.135000e-01 39 1.534451e+00 2.066438e+00 3.319000e-01 5.399000e-01 12 1.170235e+00 1.286508e+00 3.359000e-01 6.568000e-01
3 CumSum_Ozone2 CumSum_Ozone2_Lag1Trend_residue_zeroCycle_resi... 115 153 1.779672e+00 2.416111e+00 1.228734e+09 5.476000e-01 39 2.257540e+00 3.172179e+00 4.432000e-01 7.943000e-01 12 1.354663e+00 1.650164e+00 2.967000e-01 7.603000e-01
4 _Ozone2 _Ozone2_Lag1Trend_residue_zeroCycle_residue_AR... 83 153 1.836490e+00 2.532612e+00 1.261014e+09 5.651000e-01 39 2.456359e+00 3.604933e+00 4.778000e-01 8.643000e-01 12 1.841065e+00 2.482662e+00 4.057000e-01 1.033300e+00
5 Diff_Ozone2 Diff_Ozone2_PolyTrend_residue_zeroCycle_residu... 99 153 5.335368e+00 5.852276e+00 1.142074e+09 1.641700e+00 39 2.895397e+00 3.671124e+00 5.871000e-01 1.018800e+00 12 5.007064e+00 5.386804e+00 1.411300e+00 2.810100e+00
6 CumSum_Ozone2 CumSum_Ozone2_PolyTrend_residue_zeroCycle_resi... 99 153 2.224329e+00 3.113178e+00 9.287929e+08 6.844000e-01 39 2.897290e+00 3.891538e+00 5.980000e-01 1.019400e+00 12 1.616549e+00 2.029560e+00 3.554000e-01 9.072000e-01
7 CumSum_Ozone2 CumSum_Ozone2_LinearTrend_residue_zeroCycle_re... 99 153 2.192795e+00 3.048176e+00 8.947320e+08 6.747000e-01 39 3.211988e+00 4.500115e+00 6.326000e-01 1.130100e+00 12 2.261574e+00 2.677425e+00 4.949000e-01 1.269300e+00
8 CumSum_Ozone2 CumSum_Ozone2_ConstantTrend_residue_zeroCycle_... 83 153 2.353848e+00 3.341358e+00 1.092178e+09 7.243000e-01 39 3.165114e+00 4.473438e+00 6.339000e-01 1.113700e+00 12 1.915967e+00 2.535174e+00 4.221000e-01 1.075300e+00
9 Diff_Ozone2 Diff_Ozone2_LinearTrend_residue_zeroCycle_resi... 99 153 5.570456e+00 5.987756e+00 1.074544e+09 1.714000e+00 39 3.921202e+00 4.627036e+00 7.465000e-01 1.379700e+00 12 1.994069e+00 2.424893e+00 3.827000e-01 1.119100e+00
10 Diff_Ozone2 Diff_Ozone2_Lag1Trend_residue_zeroCycle_residu... 115 153 1.641996e+01 1.881203e+01 3.078581e+09 5.052300e+00 39 3.475029e+00 4.381080e+00 7.678000e-01 1.222700e+00 12 7.461257e+00 7.686989e+00 1.946900e+00 4.187400e+00
11 Diff_Ozone2 Diff_Ozone2_ConstantTrend_residue_zeroCycle_re... 83 153 4.607965e+00 5.031361e+00 1.027263e+09 1.417800e+00 39 4.858505e+00 5.388206e+00 9.708000e-01 1.709500e+00 12 3.996849e+00 4.383744e+00 9.784000e-01 2.243100e+00
12 RelDiff_Ozone2 RelDiff_Ozone2_ConstantTrend_residue_zeroCycle... 83 153 2.682369e+08 2.691162e+08 8.823529e+16 8.253444e+07 39 2.700000e+08 2.700000e+08 6.472450e+07 9.500000e+07 12 2.700000e+08 2.700000e+08 7.274202e+07 1.515306e+08
13 RelDiff_Ozone2 RelDiff_Ozone2_LinearTrend_residue_zeroCycle_r... 99 153 2.682358e+08 2.691162e+08 8.823529e+16 8.253410e+07 39 2.700000e+08 2.700000e+08 6.472450e+07 9.500000e+07 12 2.700000e+08 2.700000e+08 7.274202e+07 1.515306e+08
14 RelDiff_Ozone2 RelDiff_Ozone2_Lag1Trend_residue_zeroCycle_res... 115 153 2.682359e+08 2.691162e+08 8.823529e+16 8.253411e+07 39 2.700000e+08 2.700000e+08 6.472450e+07 9.500000e+07 12 2.700000e+08 2.700000e+08 7.274202e+07 1.515306e+08
15 RelDiff_Ozone2 RelDiff_Ozone2_PolyTrend_residue_zeroCycle_res... 99 153 2.682363e+08 2.691162e+08 8.823529e+16 8.253424e+07 39 2.700000e+08 2.700000e+08 6.472450e+07 9.500000e+07 12 2.700000e+08 2.700000e+08 7.274202e+07 1.515306e+08

In [17]:
lEngine.standrdPlots()


INFO:pyaf.std:START_PLOTTING
/home/antoine/.local/lib/python3.5/site-packages/matplotlib/__init__.py:1405: UserWarning: 
This call to matplotlib.use() has no effect because the backend has already
been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
or matplotlib.backends is imported for the first time.

  warnings.warn(_use_error_msg)
/home/antoine/.local/lib/python3.5/site-packages/matplotlib/__init__.py:1405: UserWarning: 
This call to matplotlib.use() has no effect because the backend has already
been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
or matplotlib.backends is imported for the first time.

  warnings.warn(_use_error_msg)
INFO:pyaf.std:END_PLOTTING_TIME_IN_SECONDS 5.7034502029418945

In [18]:
lEngine.mSignalDecomposition.mBestModel.mTimeInfo.mTimeDelta


Out[18]:
numpy.timedelta64(30,'D')

In [19]:
dfapp = df.copy();

In [20]:
dfapp.head()


Out[20]:
Date Month Exog2 Exog3 Exog4 Ozone Time Ozone2
0 1955-01 1955 1 AQ P_R 2.7 1955-01-01 2.7
1 1955-02 1955 2 AR P_R 2.0 1955-02-01 2.0
2 1955-03 1955 3 AS P_S 3.6 1955-03-01 3.6
3 1955-04 1955 4 AT P_U 5.0 1955-04-01 5.0
4 1955-05 1955 5 AU P_V 6.5 1955-05-01 6.5

In [ ]:


In [21]:
dfapp1 = lEngine.forecast(dfapp, 36);


INFO:pyaf.std:START_FORECASTING
INFO:pyaf.std:END_FORECAST_TIME_IN_SECONDS 13.56264328956604

In [22]:
dfapp1.head()


Out[22]:
Ozone2 Time _Ozone2 row_number Time_Normalized _Ozone2_ConstantTrend _Ozone2_ConstantTrend_residue _Ozone2_ConstantTrend_residue_zeroCycle _Ozone2_ConstantTrend_residue_zeroCycle_residue Exog2=1 ... _Ozone2_Cycle _Ozone2_Cycle_residue _Ozone2_AR _Ozone2_AR_residue _Ozone2_TransformedForecast _Ozone2_TransformedResidue Ozone2_Forecast Ozone2_Residue Ozone2_Forecast_Lower_Bound Ozone2_Forecast_Upper_Bound
0 2.7 1955-01-01 2.7 0 -1.183208 5.579085 -2.879085 0.0 -2.879085 1.0 ... 0.0 -2.879085 -0.852483 -2.026602 4.726602 -2.026602 4.726602 -2.026602 NaN NaN
1 2.0 1955-02-01 2.0 1 -1.176507 5.579085 -3.579085 0.0 -3.579085 0.0 ... 0.0 -3.579085 -0.852483 -2.726602 4.726602 -2.726602 4.726602 -2.726602 NaN NaN
2 3.6 1955-03-01 3.6 2 -1.170454 5.579085 -1.979085 0.0 -1.979085 0.0 ... 0.0 -1.979085 -0.852483 -1.126602 4.726602 -1.126602 4.726602 -1.126602 NaN NaN
3 5.0 1955-04-01 5.0 3 -1.163753 5.579085 -0.579085 0.0 -0.579085 0.0 ... 0.0 -0.579085 -0.852483 0.273398 4.726602 0.273398 4.726602 0.273398 NaN NaN
4 6.5 1955-05-01 6.5 4 -1.157268 5.579085 0.920915 0.0 0.920915 0.0 ... 0.0 0.920915 -0.852483 1.773398 4.726602 1.773398 4.726602 1.773398 NaN NaN

5 rows × 38 columns


In [23]:
dfapp1.tail(20)


Out[23]:
Ozone2 Time _Ozone2 row_number Time_Normalized _Ozone2_ConstantTrend _Ozone2_ConstantTrend_residue _Ozone2_ConstantTrend_residue_zeroCycle _Ozone2_ConstantTrend_residue_zeroCycle_residue Exog2=1 ... _Ozone2_Cycle _Ozone2_Cycle_residue _Ozone2_AR _Ozone2_AR_residue _Ozone2_TransformedForecast _Ozone2_TransformedResidue Ozone2_Forecast Ozone2_Residue Ozone2_Forecast_Lower_Bound Ozone2_Forecast_Upper_Bound
220 NaN 1973-04-24 6.105751 220 0.262533 5.579085 0.526666 0.0 0.526666 0.0 ... 0.0 0.526666 0.526666 2.220446e-16 6.105751 0.000000e+00 6.105751 0.000000e+00 NaN NaN
221 NaN 1973-05-24 5.387501 221 0.269018 5.579085 -0.191584 0.0 -0.191584 0.0 ... 0.0 -0.191584 -0.191584 -3.885781e-16 5.387501 0.000000e+00 5.387501 0.000000e+00 NaN NaN
222 NaN 1973-06-23 6.541300 222 0.275503 5.579085 0.962215 0.0 0.962215 0.0 ... 0.0 0.962215 0.962215 4.440892e-16 6.541300 0.000000e+00 6.541300 0.000000e+00 NaN NaN
223 NaN 1973-07-23 7.047441 223 0.281989 5.579085 1.468356 0.0 1.468356 0.0 ... 0.0 1.468356 1.468356 -2.220446e-16 7.047441 0.000000e+00 7.047441 0.000000e+00 NaN NaN
224 NaN 1973-08-22 -9.470756 224 0.288474 5.579085 -15.049841 0.0 -15.049841 0.0 ... 0.0 -15.049841 -15.049841 1.776357e-15 -9.470756 1.776357e-15 -9.470756 1.776357e-15 NaN NaN
225 NaN 1973-09-21 4.927371 225 0.294959 5.579085 -0.651714 0.0 -0.651714 0.0 ... 0.0 -0.651714 -0.651714 3.330669e-16 4.927371 0.000000e+00 4.927371 0.000000e+00 NaN NaN
226 NaN 1973-10-21 4.407777 226 0.301444 5.579085 -1.171308 0.0 -1.171308 0.0 ... 0.0 -1.171308 -1.171308 -2.220446e-16 4.407777 0.000000e+00 4.407777 0.000000e+00 NaN NaN
227 NaN 1973-11-20 3.964705 227 0.307929 5.579085 -1.614379 0.0 -1.614379 0.0 ... 0.0 -1.614379 -1.614379 2.220446e-16 3.964705 0.000000e+00 3.964705 0.000000e+00 NaN NaN
228 NaN 1973-12-20 4.151206 228 0.314414 5.579085 -1.427879 0.0 -1.427879 0.0 ... 0.0 -1.427879 -1.427879 -2.220446e-16 4.151206 0.000000e+00 4.151206 0.000000e+00 NaN NaN
229 NaN 1974-01-19 3.559227 229 0.320899 5.579085 -2.019858 0.0 -2.019858 0.0 ... 0.0 -2.019858 -2.019858 0.000000e+00 3.559227 0.000000e+00 3.559227 0.000000e+00 NaN NaN
230 NaN 1974-02-18 3.763137 230 0.327384 5.579085 -1.815948 0.0 -1.815948 0.0 ... 0.0 -1.815948 -1.815948 0.000000e+00 3.763137 0.000000e+00 3.763137 0.000000e+00 NaN NaN
231 NaN 1974-03-20 4.090720 231 0.333869 5.579085 -1.488365 0.0 -1.488365 0.0 ... 0.0 -1.488365 -1.488365 2.220446e-16 4.090720 0.000000e+00 4.090720 0.000000e+00 NaN NaN
232 NaN 1974-04-19 5.809615 232 0.340354 5.579085 0.230530 0.0 0.230530 0.0 ... 0.0 0.230530 0.230530 3.885781e-16 5.809615 0.000000e+00 5.809615 0.000000e+00 NaN NaN
233 NaN 1974-05-19 5.604273 233 0.346839 5.579085 0.025188 0.0 0.025188 0.0 ... 0.0 0.025188 0.025188 -1.110223e-16 5.604273 0.000000e+00 5.604273 0.000000e+00 NaN NaN
234 NaN 1974-06-18 6.321990 234 0.353324 5.579085 0.742905 0.0 0.742905 0.0 ... 0.0 0.742905 0.742905 -2.220446e-16 6.321990 0.000000e+00 6.321990 0.000000e+00 NaN NaN
235 NaN 1974-07-18 6.649917 235 0.359810 5.579085 1.070832 0.0 1.070832 0.0 ... 0.0 1.070832 1.070832 2.220446e-16 6.649917 0.000000e+00 6.649917 0.000000e+00 NaN NaN
236 NaN 1974-08-17 -7.473334 236 0.366295 5.579085 -13.052419 0.0 -13.052419 0.0 ... 0.0 -13.052419 -13.052419 -1.776357e-15 -7.473334 -1.776357e-15 -7.473334 -1.776357e-15 NaN NaN
237 NaN 1974-09-16 4.641521 237 0.372780 5.579085 -0.937564 0.0 -0.937564 0.0 ... 0.0 -0.937564 -0.937564 -2.220446e-16 4.641521 0.000000e+00 4.641521 0.000000e+00 NaN NaN
238 NaN 1974-10-16 4.348407 238 0.379265 5.579085 -1.230678 0.0 -1.230678 0.0 ... 0.0 -1.230678 -1.230678 2.220446e-16 4.348407 0.000000e+00 4.348407 0.000000e+00 NaN NaN
239 NaN 1974-11-15 4.348407 239 0.385750 5.579085 -1.230678 0.0 -1.230678 0.0 ... 0.0 -1.230678 -1.664262 4.335843e-01 3.914823 4.335843e-01 3.914823 4.335843e-01 NaN NaN

20 rows × 38 columns


In [24]:
#trdec.mTimeInfo.mTimeDelta