In [1]:
import pandas as pd
import numpy as np
import pyaf.ForecastEngine as autof
import pyaf.Bench.TS_datasets as tsds
%matplotlib inline
In [ ]:
In [2]:
cac40_symbol = "^FCHI"
b = tsds.load_yahoo_stock_price(cac40_symbol)
df = b.mPastData
In [3]:
df.sample(4)
Out[3]:
In [4]:
df.info()
In [5]:
lEngine = autof.cForecastEngine()
lEngine
H = 12;
# lEngine.mOptions.enable_slow_mode();
# lEngine.mOptions.mDebugPerformance = True;
lEngine.train(df , 'Date' , cac40_symbol, H);
In [6]:
lEngine.getModelInfo();
In [7]:
print(lEngine.mSignalDecomposition.mTrPerfDetails.head());
In [8]:
lEngine.mSignalDecomposition.mBestModel.mTimeInfo.mResolution
Out[8]:
In [9]:
lEngine.standrdPlots();