In [ ]:
import pandas as pd
import numpy as np
import AutoForecast as autof
import Bench.TS_datasets as tsds
#import SignalDecomposition_Perf as tsperf
%matplotlib inline
import pandas as pd
import numpy as np
import sys
import datetime as dt
from sqlalchemy import *
#from sqlalchemy import desc, nullsfirst
import sqlalchemy
In [ ]:
sqlalchemy.sql.expression.func.AAA
In [ ]:
In [ ]:
In [ ]:
b1 = tsds.load_airline_passengers()
df = b1.mPastData
def convert_double_to_datetime(x):
ratio = (x - int(x))
fulldate = dt.datetime(int(x), 1, 1, 0, 0, 0)
year_length = dt.datetime(int(x) + 1, 1, 1, 0, 0, 0) - fulldate
fulldate = fulldate + dt.timedelta(days = int(year_length.days*ratio))
return fulldate
lDateCol = 'time';
df[lDateCol] = df[lDateCol].apply(lambda x : convert_double_to_datetime(x))
lAutoF = autof.cAutoForecast()
lAutoF.mOptions.mDebugCycles = True
lAutoF
lAutoF.train(df , 'time' , 'AirPassengers' , 12)
lAutoF.getModelInfo()
In [ ]:
lAutoF.generateCode()
In [ ]:
import TS_CodeGen_Objects as tscodegen
lCodeGenerator = tscodegen.cDecompositionCodeGenObject();
lSQL = lCodeGenerator.testGeneration(lAutoF);
In [ ]:
lCodeGenerator.mEngine.table_names()
In [ ]:
sqlalchemy.types.Interval?
In [ ]: