In [1]:
import pandas as pd
import numpy as np
import pyaf.ForecastEngine as autof
import pyaf.Bench.TS_datasets as tsds
%matplotlib inline
In [2]:
b1 = tsds.generate_random_TS(12, 'D', 4243, "linear" , 52 , "" , 0.01)
b2 = tsds.generate_random_TS(12 , 'D', 4242, "poly" , 52 , "" , 0.01)
In [3]:
def compute_R2(signal , estimator):
lMean = np.mean(signal.values)
SSTot = np.dot((signal.values - lMean), (signal.values - lMean)) + 1.0e-10
SSRes = np.dot((estimator.values - signal.values), (estimator.values - signal.values))
R2 = 1.0 - SSRes/SSTot
print("compute_R2_sig" , signal.T)
print("compute_R2_est" , estimator.T)
print("compute_R2" , lMean, SSTot, SSRes, R2)
return R2
In [4]:
compute_R2(b1.mPastData.Signal , b2.mPastData.Signal)
Out[4]:
In [ ]: