In [1]:
import LoadDataset
In [38]:
import numpy as np
import tflearn
In [32]:
dataSet = [x for x in LoadDataset.getNextImage('../data/train_sample/')]
images = np.asarray([x[0] for x in dataSet])
labels = np.asarray([x[1] for x in dataSet])
In [36]:
print images[0].shape
(100, 100, 3)
In [40]:
net = tflearn.input_data(shape=[None, 100, 100, 3])
net = tflearn.lstm(net, 128, return_seq=True)
net = tflearn.lstm(net, 128)
net = tflearn.fully_connected(net, 10, activation='softmax')
net = tflearn.regression(net, optimizer='adam',
loss='categorical_crossentropy', name="output1")
model = tflearn.DNN(net, tensorboard_verbose=2)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-40-575e8b7536aa> in <module>()
1 net = tflearn.input_data(shape=[None, 100, 100, 3])
----> 2 net = tflearn.lstm(net, [128,3], return_seq=True)
3 net = tflearn.lstm(net, [128,3])
4 net = tflearn.fully_connected(net, 10, activation='softmax')
5 net = tflearn.regression(net, optimizer='adam',
/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tflearn/layers/recurrent.pyc in lstm(incoming, n_units, activation, inner_activation, dropout, bias, weights_init, forget_bias, return_seq, return_states, initial_state, sequence_length, trainable, restore, name)
199 outputs, states = _rnn(out_cell, inference, dtype=tf.float32,
200 initial_state=initial_state, scope=scope[:-1],
--> 201 sequence_length=sequence_length)
202 # Track per layer variables
203 tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, cell.W)
/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tflearn/layers/recurrent.pyc in _rnn(cell, inputs, initial_state, dtype, sequence_length, scope)
832 if not dtype:
833 raise ValueError("If no initial_state is provided, dtype must be.")
--> 834 state = cell.zero_state(batch_size, dtype)
835
836 if sequence_length: # Prepare variables
/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tflearn/layers/recurrent.pyc in zero_state(self, batch_size, dtype)
527 """
528 zeros = array_ops.zeros(
--> 529 array_ops.pack([batch_size, self.state_size]), dtype=dtype)
530 zeros.set_shape([None, self.state_size])
531 return zeros
/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.pyc in pack(values, axis, name)
485 (axis, -expanded_num_dims, expanded_num_dims))
486
--> 487 return gen_array_ops._pack(values, axis=axis, name=name)
488
489
/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.pyc in _pack(values, axis, name)
1460 A `Tensor`. Has the same type as `values`. The packed tensor.
1461 """
-> 1462 result = _op_def_lib.apply_op("Pack", values=values, axis=axis, name=name)
1463 return result
1464
/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.pyc in apply_op(self, op_type_name, name, **keywords)
701 op = g.create_op(op_type_name, inputs, output_types, name=scope,
702 input_types=input_types, attrs=attr_protos,
--> 703 op_def=op_def)
704 outputs = op.outputs
705 return _Restructure(ops.convert_n_to_tensor(outputs),
/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in create_op(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_shapes, compute_device)
2317 original_op=self._default_original_op, op_def=op_def)
2318 if compute_shapes:
-> 2319 set_shapes_for_outputs(ret)
2320 self._add_op(ret)
2321 self._record_op_seen_by_control_dependencies(ret)
/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in set_shapes_for_outputs(op)
1709 raise RuntimeError("No shape function registered for standard op: %s"
1710 % op.type)
-> 1711 shapes = shape_func(op)
1712 if shapes is None:
1713 raise RuntimeError(
/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.pyc in _PackShape(op)
705
706 for inp in op.inputs[1:]:
--> 707 input_shape = input_shape.merge_with(inp.get_shape())
708
709 input_shape = input_shape.as_list()
/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/tensor_shape.pyc in merge_with(self, other)
568 except ValueError:
569 raise ValueError("Shapes %s and %s are not compatible" %
--> 570 (self, other))
571
572 def concatenate(self, other):
ValueError: Shapes () and (4,) are not compatible
In [ ]:
Content source: ankdesh/DeepLearning-UdacityCapston
Similar notebooks: