In [1]:
import LoadDataset

In [38]:
import numpy as np
import tflearn

In [32]:
dataSet = [x for x in LoadDataset.getNextImage('../data/train_sample/')]
images = np.asarray([x[0] for x in dataSet])
labels = np.asarray([x[1] for x in dataSet])

In [36]:
print images[0].shape


(100, 100, 3)

In [40]:
net = tflearn.input_data(shape=[None, 100, 100, 3])
net = tflearn.lstm(net, 128, return_seq=True)
net = tflearn.lstm(net, 128)
net = tflearn.fully_connected(net, 10, activation='softmax')
net = tflearn.regression(net, optimizer='adam',
                         loss='categorical_crossentropy', name="output1")
model = tflearn.DNN(net, tensorboard_verbose=2)


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-40-575e8b7536aa> in <module>()
      1 net = tflearn.input_data(shape=[None, 100, 100, 3])
----> 2 net = tflearn.lstm(net, [128,3], return_seq=True)
      3 net = tflearn.lstm(net, [128,3])
      4 net = tflearn.fully_connected(net, 10, activation='softmax')
      5 net = tflearn.regression(net, optimizer='adam',

/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tflearn/layers/recurrent.pyc in lstm(incoming, n_units, activation, inner_activation, dropout, bias, weights_init, forget_bias, return_seq, return_states, initial_state, sequence_length, trainable, restore, name)
    199         outputs, states = _rnn(out_cell, inference, dtype=tf.float32,
    200                                initial_state=initial_state, scope=scope[:-1],
--> 201                                sequence_length=sequence_length)
    202         # Track per layer variables
    203         tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + scope, cell.W)

/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tflearn/layers/recurrent.pyc in _rnn(cell, inputs, initial_state, dtype, sequence_length, scope)
    832         if not dtype:
    833             raise ValueError("If no initial_state is provided, dtype must be.")
--> 834         state = cell.zero_state(batch_size, dtype)
    835 
    836     if sequence_length:  # Prepare variables

/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tflearn/layers/recurrent.pyc in zero_state(self, batch_size, dtype)
    527         """
    528         zeros = array_ops.zeros(
--> 529             array_ops.pack([batch_size, self.state_size]), dtype=dtype)
    530         zeros.set_shape([None, self.state_size])
    531         return zeros

/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.pyc in pack(values, axis, name)
    485                        (axis, -expanded_num_dims, expanded_num_dims))
    486 
--> 487   return gen_array_ops._pack(values, axis=axis, name=name)
    488 
    489 

/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.pyc in _pack(values, axis, name)
   1460     A `Tensor`. Has the same type as `values`. The packed tensor.
   1461   """
-> 1462   result = _op_def_lib.apply_op("Pack", values=values, axis=axis, name=name)
   1463   return result
   1464 

/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.pyc in apply_op(self, op_type_name, name, **keywords)
    701           op = g.create_op(op_type_name, inputs, output_types, name=scope,
    702                            input_types=input_types, attrs=attr_protos,
--> 703                            op_def=op_def)
    704           outputs = op.outputs
    705           return _Restructure(ops.convert_n_to_tensor(outputs),

/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in create_op(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_shapes, compute_device)
   2317                     original_op=self._default_original_op, op_def=op_def)
   2318     if compute_shapes:
-> 2319       set_shapes_for_outputs(ret)
   2320     self._add_op(ret)
   2321     self._record_op_seen_by_control_dependencies(ret)

/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in set_shapes_for_outputs(op)
   1709       raise RuntimeError("No shape function registered for standard op: %s"
   1710                          % op.type)
-> 1711   shapes = shape_func(op)
   1712   if shapes is None:
   1713     raise RuntimeError(

/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.pyc in _PackShape(op)
    705 
    706   for inp in op.inputs[1:]:
--> 707     input_shape = input_shape.merge_with(inp.get_shape())
    708 
    709   input_shape = input_shape.as_list()

/home/ankdesh/installed/anaconda/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/tensor_shape.pyc in merge_with(self, other)
    568       except ValueError:
    569         raise ValueError("Shapes %s and %s are not compatible" %
--> 570                          (self, other))
    571 
    572   def concatenate(self, other):

ValueError: Shapes () and (4,) are not compatible

In [ ]: