In [7]:
import tensorflow as tf
import os
import random
import pylab
import numpy as np
import matplotlib.pyplot as plt
In [8]:
DATA_FOLDER = '/home/ankdesh/explore/DeepLearning-UdacityCapston/data/train_sample'
In [9]:
import matplotlib.pyplot as plt
%matplotlib inline
from PIL import Image
In [10]:
imgs = []
for i in range(5):
imgs.append(os.path.join(DATA_FOLDER,random.choice(os.listdir(DATA_FOLDER))))
In [11]:
f,ax = plt.subplots(1,5, figsize=(15,15))
for i in range(5):
ax[i].imshow(Image.open(imgs[i]))
plt.show() # or display.display(plt.gcf()) if you prefer
In [12]:
print [Image.open(x).size for x in imgs]
In [ ]: