In [35]:
%matplotlib inline
from mpl_toolkits.basemap import Basemap
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import fiona
from fiona.crs import to_string,from_epsg
from shapely.geometry import Point, Polygon, MultiPoint, MultiPolygon, shape
from shapely.prepared import prep
from itertools import chain
from mpl_toolkits.basemap.pyproj import Proj, transform
matplotlib.rcParams['figure.figsize'] = (20.0, 16.0)
In [29]:
shp = fiona.open('data/CITY_LIMITS.shp')
lat_0 = shp.crs['lat_0']
lon_0 = shp.crs['lon_0']
shp.close()
shp = fiona.open('data/SJ.shp')
extra = 0
bds = shp.bounds
ll = (bds[0], bds[1])
ur = (bds[2], bds[3])
coords = list(chain(ll, ur))
w, h = coords[2] - coords[0], coords[3] - coords[1]
m = Basemap(
projection='tmerc',
lon_0=-121.848729129722,
lat_0=37.3020714417266,
ellps = 'WGS84',
llcrnrlon=coords[0],
llcrnrlat=coords[1],
urcrnrlon=coords[2],
urcrnrlat=coords[3],
lat_ts=0,
resolution='i',
suppress_ticks=True)
shp.close()
In [30]:
data = pd.read_excel('data/dumping_data.xlsx')
In [31]:
data.describe()
Out[31]:
In [44]:
lat_loc = data['intersection_lat'].dropna()
lon_loc = data['intersection_lng'].dropna()
m.fillcontinents(color='#ddaa66',lake_color='aqua')
m.drawcoastlines()
m.readshapefile('data/SJ','San Jose')
m.scatter(lon_loc.tolist(),
lat_loc.tolist(),
10, marker='o', lw=.25,
facecolor='#33ccff', edgecolor='w',
alpha=0.9, antialiased=True,
label='Dumping Locations', zorder=3, latlon=True)
Out[44]:
In [ ]: