In [1]:
import sympy
from sympy.abc import x,y,r
from sympy.solvers.solvers import nsolve
from sympy import sin

In [2]:
pi = 3.14159
f1 = 2*r*sin(x/2) - 5
f2 = 2*r*sin(y/2) - 8
f3 = x + y - pi
ang_1,ang_2,radius = nsolve((f1, f2, f3), (x,y,r), (1,1,1))
ang_1,ang_2,radius


Out[2]:
(mpf('1.1171978852963868'),
 mpf('2.0243921147036131'),
 mpf('4.7169933788311705'))

In [3]:
total_area = radius**2 * pi
total_area


Out[3]:
mpf('69.900460865034646')

In [4]:
segment_areas = radius**2 * ((ang_1 - sin(ang_1)) + (ang_2 - sin(ang_2)))
segment_areas


Out[4]:
mpf('29.900401822626527')

In [5]:
kite_area = total_area - segment_areas
kite_area


Out[5]:
mpf('40.000059042408118')


In [6]:
from math import sqrt

In [7]:
radius = 13
width = 5

In [8]:
height = sqrt(radius**2 - width**2)

In [9]:
area = height * width
area


Out[9]:
60.0