Esteban Martinez, Andres Heredia

Introduction

The purpose of this lab is to find out the effects of mass on the oscillation of a spring scale. We will put several weights on the scale and record the oscillation time five times, after which we will take the average.

Procedure

$$Oscillation$$
mass (g) avg. time (s)
50 .29
100 .44
150 .47
200 .53
250 .61
300 .71

In [1]:
%matplotlib inline

Data Analysis


In [8]:
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit

mass = [ 50, 100, 150, 200, 250, 300]
time = [ .29, .44, .47, .53, .61, .71]
xx = np.linspace(0,400,10)
def lin_model( x, a, b):
    return a*x + b
a,b = curve_fit(lin_model, mass, time)[0]
print(a,b)
plt.title('Oscillation Time on a Spring Scale')
plt.ylabel ('Time (s)')
plt.xlabel ('Mass (g)')
plt.plot(xx, lin_model(xx, a, b))
plt.plot(mass,time,'ro')


0.00152571428745 0.24133333303
Out[8]:
[<matplotlib.lines.Line2D at 0x7b7c940>]

Conclusion


In [ ]: