In [5]:
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston

In [6]:
# Load the data from the the boston house-prices dataset 
boston_data = load_boston()
x = boston_data['data']
y = boston_data['target']

In [7]:
print(boston_data.feature_names)


['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
 'B' 'LSTAT']

In [8]:
print(x)


[[  6.32000000e-03   1.80000000e+01   2.31000000e+00 ...,   1.53000000e+01
    3.96900000e+02   4.98000000e+00]
 [  2.73100000e-02   0.00000000e+00   7.07000000e+00 ...,   1.78000000e+01
    3.96900000e+02   9.14000000e+00]
 [  2.72900000e-02   0.00000000e+00   7.07000000e+00 ...,   1.78000000e+01
    3.92830000e+02   4.03000000e+00]
 ..., 
 [  6.07600000e-02   0.00000000e+00   1.19300000e+01 ...,   2.10000000e+01
    3.96900000e+02   5.64000000e+00]
 [  1.09590000e-01   0.00000000e+00   1.19300000e+01 ...,   2.10000000e+01
    3.93450000e+02   6.48000000e+00]
 [  4.74100000e-02   0.00000000e+00   1.19300000e+01 ...,   2.10000000e+01
    3.96900000e+02   7.88000000e+00]]

In [9]:
print(y)


[ 24.   21.6  34.7  33.4  36.2  28.7  22.9  27.1  16.5  18.9  15.   18.9
  21.7  20.4  18.2  19.9  23.1  17.5  20.2  18.2  13.6  19.6  15.2  14.5
  15.6  13.9  16.6  14.8  18.4  21.   12.7  14.5  13.2  13.1  13.5  18.9
  20.   21.   24.7  30.8  34.9  26.6  25.3  24.7  21.2  19.3  20.   16.6
  14.4  19.4  19.7  20.5  25.   23.4  18.9  35.4  24.7  31.6  23.3  19.6
  18.7  16.   22.2  25.   33.   23.5  19.4  22.   17.4  20.9  24.2  21.7
  22.8  23.4  24.1  21.4  20.   20.8  21.2  20.3  28.   23.9  24.8  22.9
  23.9  26.6  22.5  22.2  23.6  28.7  22.6  22.   22.9  25.   20.6  28.4
  21.4  38.7  43.8  33.2  27.5  26.5  18.6  19.3  20.1  19.5  19.5  20.4
  19.8  19.4  21.7  22.8  18.8  18.7  18.5  18.3  21.2  19.2  20.4  19.3
  22.   20.3  20.5  17.3  18.8  21.4  15.7  16.2  18.   14.3  19.2  19.6
  23.   18.4  15.6  18.1  17.4  17.1  13.3  17.8  14.   14.4  13.4  15.6
  11.8  13.8  15.6  14.6  17.8  15.4  21.5  19.6  15.3  19.4  17.   15.6
  13.1  41.3  24.3  23.3  27.   50.   50.   50.   22.7  25.   50.   23.8
  23.8  22.3  17.4  19.1  23.1  23.6  22.6  29.4  23.2  24.6  29.9  37.2
  39.8  36.2  37.9  32.5  26.4  29.6  50.   32.   29.8  34.9  37.   30.5
  36.4  31.1  29.1  50.   33.3  30.3  34.6  34.9  32.9  24.1  42.3  48.5
  50.   22.6  24.4  22.5  24.4  20.   21.7  19.3  22.4  28.1  23.7  25.
  23.3  28.7  21.5  23.   26.7  21.7  27.5  30.1  44.8  50.   37.6  31.6
  46.7  31.5  24.3  31.7  41.7  48.3  29.   24.   25.1  31.5  23.7  23.3
  22.   20.1  22.2  23.7  17.6  18.5  24.3  20.5  24.5  26.2  24.4  24.8
  29.6  42.8  21.9  20.9  44.   50.   36.   30.1  33.8  43.1  48.8  31.
  36.5  22.8  30.7  50.   43.5  20.7  21.1  25.2  24.4  35.2  32.4  32.
  33.2  33.1  29.1  35.1  45.4  35.4  46.   50.   32.2  22.   20.1  23.2
  22.3  24.8  28.5  37.3  27.9  23.9  21.7  28.6  27.1  20.3  22.5  29.
  24.8  22.   26.4  33.1  36.1  28.4  33.4  28.2  22.8  20.3  16.1  22.1
  19.4  21.6  23.8  16.2  17.8  19.8  23.1  21.   23.8  23.1  20.4  18.5
  25.   24.6  23.   22.2  19.3  22.6  19.8  17.1  19.4  22.2  20.7  21.1
  19.5  18.5  20.6  19.   18.7  32.7  16.5  23.9  31.2  17.5  17.2  23.1
  24.5  26.6  22.9  24.1  18.6  30.1  18.2  20.6  17.8  21.7  22.7  22.6
  25.   19.9  20.8  16.8  21.9  27.5  21.9  23.1  50.   50.   50.   50.
  50.   13.8  13.8  15.   13.9  13.3  13.1  10.2  10.4  10.9  11.3  12.3
   8.8   7.2  10.5   7.4  10.2  11.5  15.1  23.2   9.7  13.8  12.7  13.1
  12.5   8.5   5.    6.3   5.6   7.2  12.1   8.3   8.5   5.   11.9  27.9
  17.2  27.5  15.   17.2  17.9  16.3   7.    7.2   7.5  10.4   8.8   8.4
  16.7  14.2  20.8  13.4  11.7   8.3  10.2  10.9  11.    9.5  14.5  14.1
  16.1  14.3  11.7  13.4   9.6   8.7   8.4  12.8  10.5  17.1  18.4  15.4
  10.8  11.8  14.9  12.6  14.1  13.   13.4  15.2  16.1  17.8  14.9  14.1
  12.7  13.5  14.9  20.   16.4  17.7  19.5  20.2  21.4  19.9  19.   19.1
  19.1  20.1  19.9  19.6  23.2  29.8  13.8  13.3  16.7  12.   14.6  21.4
  23.   23.7  25.   21.8  20.6  21.2  19.1  20.6  15.2   7.    8.1  13.6
  20.1  21.8  24.5  23.1  19.7  18.3  21.2  17.5  16.8  22.4  20.6  23.9
  22.   11.9]

In [10]:
# Make and fit the linear regression model
# TODO: Fit the model and Assign it to the model variable
model = LinearRegression()
model.fit(x,y)


Out[10]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

In [12]:
# Make a prediction using the model
sample_house = [[2.29690000e-01, 0.00000000e+00, 1.05900000e+01, 0.00000000e+00, 4.89000000e-01,
                6.32600000e+00, 5.25000000e+01, 4.35490000e+00, 4.00000000e+00, 2.77000000e+02,
                1.86000000e+01, 3.94870000e+02, 1.09700000e+01]]

In [13]:
# TODO: Predict housing price for the sample_house
prediction = model.predict(sample_house)

print(prediction)


[ 23.68420569]