In [5]:
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
In [6]:
# Load the data from the the boston house-prices dataset
boston_data = load_boston()
x = boston_data['data']
y = boston_data['target']
In [7]:
print(boston_data.feature_names)
In [8]:
print(x)
In [9]:
print(y)
In [10]:
# Make and fit the linear regression model
# TODO: Fit the model and Assign it to the model variable
model = LinearRegression()
model.fit(x,y)
Out[10]:
In [12]:
# Make a prediction using the model
sample_house = [[2.29690000e-01, 0.00000000e+00, 1.05900000e+01, 0.00000000e+00, 4.89000000e-01,
6.32600000e+00, 5.25000000e+01, 4.35490000e+00, 4.00000000e+00, 2.77000000e+02,
1.86000000e+01, 3.94870000e+02, 1.09700000e+01]]
In [13]:
# TODO: Predict housing price for the sample_house
prediction = model.predict(sample_house)
print(prediction)