In [1]:
import tensorflow as tf

In [2]:
# Output depth
k_output = 64

In [3]:
# Image Properties
image_width = 10
image_height = 10
color_channels = 3

In [4]:
# Convolution filter
filter_size_width = 5
filter_size_height = 5

In [5]:
# Input/Image
input = tf.placeholder(tf.float32,shape=[None, image_height, image_width, color_channels])

In [6]:
# Weight and bias
weight = tf.Variable(tf.truncated_normal(
    [filter_size_height, filter_size_width, color_channels, k_output]))
bias = tf.Variable(tf.zeros(k_output))

In [7]:
# Apply Convolution
conv_layer = tf.nn.conv2d(input, weight, strides=[1, 2, 2, 1], padding='SAME')

In [8]:
# Add bias
conv_layer = tf.nn.bias_add(conv_layer, bias)

In [9]:
# Apply activation function
conv_layer = tf.nn.relu(conv_layer)

In [10]:
# Apply Max Pooling
conv_layer = tf.nn.max_pool(
    conv_layer,
    ksize=[1, 2, 2, 1],
    strides=[1, 2, 2, 1],
    padding='SAME')

In [11]:
print(conv_layer)


Tensor("MaxPool:0", shape=(?, 3, 3, 64), dtype=float32)

In [ ]: