In [1]:
# Solution is available in the other "solution.py" tab
import tensorflow as tf
def run():
output = None
logit_data = [2.0, 1.0, 0.1]
logits = tf.placeholder(tf.float32)
# TODO: Calculate the softmax of the logits
# softmax =
softmax = tf.nn.softmax(logits)
with tf.Session() as sess:
# TODO: Feed in the logit data
# output = sess.run(softmax, )
output = sess.run(softmax, feed_dict={logits: logit_data})
return output
In [4]:
run()
Out[4]:
In [ ]: