In [163]:
# Use the numpy library
import numpy as np
In [164]:
def prepare_inputs(inputs):
# TODO: create a 2-dimensional ndarray from the given 1-dimensional list;
# assign it to input_array
input_array = np.array([inputs])
# TODO: find the minimum value in input_array and subtract that
# value from all the elements of input_array. Store the
# result in inputs_minus_min
inputs_minus_min = input_array - np.min(input_array)
# TODO: find the maximum value in inputs_minus_min and divide
# all of the values in inputs_minus_min by the maximum value.
# Store the results in inputs_div_max.
inputs_div_max = inputs_minus_min / np.max(inputs_minus_min)
# return the three arrays we've created
return input_array, inputs_minus_min, inputs_div_max
In [165]:
def multiply_inputs(m1, m2):
if m1.shape[1] == m2.shape[0]:
return np.matmul(m1,m2)
elif m1.shape[0] == m2.shape[1]:
return np.matmul(m2,m1)
else:
return False
In [166]:
def find_mean(values):
# TODO: Return the average of the values in the given Python list
return np.mean(values)
In [167]:
input_array, inputs_minus_min, inputs_div_max = prepare_inputs([-1,2,7])
In [168]:
print("Input as Array: {}".format(input_array))
In [169]:
print("Input minus min: {}".format(inputs_minus_min))
In [170]:
print("Input Array: {}".format(inputs_div_max))
In [171]:
print("Multiply 1:\n{}".format(multiply_inputs(np.array([[1,2,3],[4,5,6]]), np.array([[1],[2],[3],[4]]))))
In [172]:
print("Multiply 2:\n{}".format(multiply_inputs(np.array([[1,2,3],[4,5,6]]), np.array([[1],[2],[3]]))))
In [173]:
print("Multiply 3:\n{}".format(multiply_inputs(np.array([[1,2,3],[4,5,6]]), np.array([[1,2]]))))
In [174]:
print("Mean == {}".format(find_mean([1,3,4])))