In [1]:
import pandas as pd
import numpy as np

In [3]:
pd.read_csv('faa-wildlife-strike-clean.csv').head()


Out[3]:
SKY FLT DAMAGE REPORTED_NAME REMAINS_COLLECTED BIRDS_SEEN FAAREGION REPORTED_DATE EFFECT_OTHER REMAINS_SENT ... COST_REPAIRS_INFL_ADJ ENROUTE RUNWAY AIRPORT COMMENTS COST_OTHER_INFL_ADJ REMARKS NUM_ENGS TIME SPEED
0 NaN NaN NaN NaN True NaN AWP NaN NaN False ... NaN NaN NaN LIHUE ARPT NaN NaN NaN 2 NaN NaN
1 NaN NaN Minor (Civilian) NaN False NaN ASO NaN NaN False ... NaN NaN NaN CINCINNATI/NORTHERN KENTUCKY INTL ARPT SOURCE = FAA AIRCRAFT ACCIDENT/INCIDENT REPT NaN HIT GULL AFTER T/O (ASSUME CLIMB). CONTD TO DE... 2 NaN NaN
2 NaN NaN NaN NaN True NaN AWP NaN NaN False ... NaN NaN NaN LIHUE ARPT NaN NaN NaN NaN NaN NaN
3 NaN NaN None (Military) Deleted False 1 ASO 5/19/00 NaN False ... NaN NaN NaN MYRTLE BEACH INTL SOURCE = BASH NR xxxxx NaN REMARKS - ; AIRCRAFT - A - 10 - ; IMPACT -... NaN 09:10 138
4 NaN NaN None (Military) Deleted True 1 ASO 5/19/00 NaN True ... NaN NaN NaN JACKSONVILLE INTL SOURCE = BASH NR xxxxx NaN REMARKS - ; AIRCRAFT - F - 16 - ; IMPACT -... NaN 09:40 200

5 rows × 42 columns


In [4]:
df = pd.read_csv('faa-wildlife-strike-clean.csv')

In [8]:
df.COST_OTHER_INFL_ADJ.apply(lambda x: np.float(x))


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-8-84a28d0983ff> in <module>()
----> 1 df.COST_OTHER_INFL_ADJ.apply(lambda x: np.float(x))

/Library/Python/2.7/site-packages/pandas/core/series.pyc in apply(self, func, convert_dtype, args, **kwds)
   2049             values = lib.map_infer(values, lib.Timestamp)
   2050 
-> 2051         mapped = lib.map_infer(values, f, convert=convert_dtype)
   2052         if len(mapped) and isinstance(mapped[0], Series):
   2053             from pandas.core.frame import DataFrame

/Library/Python/2.7/site-packages/pandas/lib.so in pandas.lib.map_infer (pandas/lib.c:56671)()

<ipython-input-8-84a28d0983ff> in <lambda>(x)
----> 1 df.COST_OTHER_INFL_ADJ.apply(lambda x: np.float(x))

ValueError: invalid literal for float(): 753,021

In [ ]:
df.groupby(')