In [1]:
import pandas as pd
import numpy as np
In [3]:
pd.read_csv('faa-wildlife-strike-clean.csv').head()
Out[3]:
SKY
FLT
DAMAGE
REPORTED_NAME
REMAINS_COLLECTED
BIRDS_SEEN
FAAREGION
REPORTED_DATE
EFFECT_OTHER
REMAINS_SENT
...
COST_REPAIRS_INFL_ADJ
ENROUTE
RUNWAY
AIRPORT
COMMENTS
COST_OTHER_INFL_ADJ
REMARKS
NUM_ENGS
TIME
SPEED
0
NaN
NaN
NaN
NaN
True
NaN
AWP
NaN
NaN
False
...
NaN
NaN
NaN
LIHUE ARPT
NaN
NaN
NaN
2
NaN
NaN
1
NaN
NaN
Minor (Civilian)
NaN
False
NaN
ASO
NaN
NaN
False
...
NaN
NaN
NaN
CINCINNATI/NORTHERN KENTUCKY INTL ARPT
SOURCE = FAA AIRCRAFT ACCIDENT/INCIDENT REPT
NaN
HIT GULL AFTER T/O (ASSUME CLIMB). CONTD TO DE...
2
NaN
NaN
2
NaN
NaN
NaN
NaN
True
NaN
AWP
NaN
NaN
False
...
NaN
NaN
NaN
LIHUE ARPT
NaN
NaN
NaN
NaN
NaN
NaN
3
NaN
NaN
None (Military)
Deleted
False
1
ASO
5/19/00
NaN
False
...
NaN
NaN
NaN
MYRTLE BEACH INTL
SOURCE = BASH NR xxxxx
NaN
REMARKS - ; AIRCRAFT - A - 10 - ; IMPACT -...
NaN
09:10
138
4
NaN
NaN
None (Military)
Deleted
True
1
ASO
5/19/00
NaN
True
...
NaN
NaN
NaN
JACKSONVILLE INTL
SOURCE = BASH NR xxxxx
NaN
REMARKS - ; AIRCRAFT - F - 16 - ; IMPACT -...
NaN
09:40
200
5 rows × 42 columns
In [4]:
df = pd.read_csv('faa-wildlife-strike-clean.csv')
In [8]:
df.COST_OTHER_INFL_ADJ.apply(lambda x: np.float(x))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-8-84a28d0983ff> in <module>()
----> 1 df.COST_OTHER_INFL_ADJ.apply(lambda x: np.float(x))
/Library/Python/2.7/site-packages/pandas/core/series.pyc in apply(self, func, convert_dtype, args, **kwds)
2049 values = lib.map_infer(values, lib.Timestamp)
2050
-> 2051 mapped = lib.map_infer(values, f, convert=convert_dtype)
2052 if len(mapped) and isinstance(mapped[0], Series):
2053 from pandas.core.frame import DataFrame
/Library/Python/2.7/site-packages/pandas/lib.so in pandas.lib.map_infer (pandas/lib.c:56671)()
<ipython-input-8-84a28d0983ff> in <lambda>(x)
----> 1 df.COST_OTHER_INFL_ADJ.apply(lambda x: np.float(x))
ValueError: invalid literal for float(): 753,021
In [ ]:
df.groupby(')
Content source: anabranch/Info247
Similar notebooks: