In [1]:
from sklearn.datasets import fetch_mldata
In [3]:
mnist = fetch_mldata("MNIST original")
In [4]:
X_train, X_test = mnist.data[:60000] / 255., mnist.data[60000:] / 255.
In [12]:
y_train, y_test = mnist.target[:60000], mnist.target[60000:]
In [13]:
np.save( "y_test.npy", y_test)
In [14]:
np.save("X_test.npy", X_test)
In [16]:
for i in xrange(10):
np.save("X_train_%d.npy" % i, X_train[i * 6000:(i+1) * 6000])
np.save("y_train_%d.npy" % i, y_train[i * 6000:(i+1) * 6000])
In [ ]:
X_Test.shape