In [ ]:
# write out some toy data
from sklearn.datasets import load_digits
import pickle
digits = load_digits()
X, y = digits.data, digits.target
for i in range(10):
pickle.dump((X[i::10] / 16., y[i::10]), open("data/batch_%02d.pickle" % i, "wb"), -1)
In [ ]:
from sklearn.linear_model import SGDClassifier
In [ ]:
sgd = SGDClassifier(random_state=1)
for i in range(9):
X_batch, y_batch = pickle.load(open("data/batch_%02d.pickle" % i, "rb"))
sgd.partial_fit(X_batch, y_batch, classes=range(10))
In [ ]:
X_test, y_test = pickle.load(open("data/batch_09.pickle", "rb"))
sgd.score(X_test, y_test)
In [ ]:
# %load solutions/out_of_core.py