In [1]:
# write out some toy data
from sklearn.datasets import load_digits
import cPickle

digits = load_digits()

X, y = digits.data, digits.target

for i in range(10):
    cPickle.dump((X[i::10], y[i::10]), open("data/batch_%02d.pickle" % i, "w"), -1)

In [2]:
from sklearn.linear_model import SGDClassifier

In [3]:
sgd = SGDClassifier()

for i in range(9):
    X_batch, y_batch = cPickle.load(open("data/batch_%02d.pickle" % i))
    sgd.partial_fit(X_batch, y_batch, classes=range(10))

In [4]:
X_test, y_test = cPickle.load(open("data/batch_09.pickle"))

sgd.score(X_test, y_test)


Out[4]:
0.93296089385474856

In [ ]: