In [ ]:
# write out some toy data
from sklearn.datasets import load_digits
import pickle

digits = load_digits()

X, y = digits.data, digits.target

for i in range(10):
    pickle.dump((X[i::10], y[i::10]), open("data/batch_%02d.pickle" % i, "wb"), -1)

In [ ]:
from sklearn.linear_model import SGDClassifier

In [ ]:
sgd = SGDClassifier()

for i in range(9):
    X_batch, y_batch = cPickle.load(open("data/batch_%02d.pickle" % i))
    sgd.partial_fit(X_batch, y_batch, classes=range(10))

In [ ]:
X_test, y_test = pickle.load(open("data/batch_09.pickle", "rb"))

sgd.score(X_test, y_test)

In [ ]: