In [1]:
from numpy import sqrt
from qutip import *
These are the polarization states:
In [2]:
H = Qobj([[1],[0]])
V = Qobj([[0],[1]])
P45 = Qobj([[1/sqrt(2)],[1/sqrt(2)]])
M45 = Qobj([[1/sqrt(2)],[-1/sqrt(2)]])
R = Qobj([[1/sqrt(2)],[-1j/sqrt(2)]])
L = Qobj([[1/sqrt(2)],[1j/sqrt(2)]])
Devices:
HWP - Half-wave plate axis at $\theta$ to the horizontal
LP - Linear polarizer, axis at $\theta$
QWP - Quarter-wave plate, axis at $\theta$
Note, these are functions so you need to call them with a specific value of theta.
In [3]:
def HWP(theta):
return Qobj([[cos(2*theta),sin(2*theta)],[sin(2*theta),-cos(2*theta)]]).tidyup()
In [4]:
def LP(theta):
return Qobj([[cos(theta)**2,cos(theta)*sin(theta)],[sin(theta)*cos(theta),sin(theta)**2]]).tidyup()
In [5]:
def QWP(theta):
return Qobj([[cos(theta)**2 + 1j*sin(theta)**2,
(1-1j)*sin(theta)*cos(theta)],
[(1-1j)*sin(theta)*cos(theta),
sin(theta)**2 + 1j*cos(theta)**2]]).tidyup()
In [6]:
H.dag()*H
Out[6]:
In [7]:
psi = Qobj([[1+1j], [2-1j]])
psi
Out[7]:
In [8]:
psi.dag()
Out[8]:
In [9]:
psi.dag().dag()
Out[9]:
In [ ]: