In [4]:
from numpy import sqrt
from qutip import *
In [5]:
H = Qobj([[1],[0]])
V = Qobj([[0],[1]])
In [6]:
psi = 1/sqrt(2)*tensor(H,H) + 1/sqrt(2)*tensor(V,V)
psi
Out[6]:
In [7]:
rho_ent = psi*psi.dag()
In [8]:
(rho_ent*rho_ent).tr()
Out[8]:
In [9]:
rho_mix = 0.5*tensor(H,H)*tensor(H,H).dag() + 0.5*tensor(V,V)*tensor(V,V).dag()
In [10]:
(rho_mix*rho_mix).tr()
Out[10]:
Remember the 45 states:
In [11]:
P45 = Qobj([[1/sqrt(2)],[1/sqrt(2)]])
M45 = Qobj([[1/sqrt(2)],[-1/sqrt(2)]])
Create the projection operator for $|+45,+45\rangle$
In [12]:
Proj_4545 = tensor(P45,P45)*tensor(P45,P45).dag()
In [13]:
(Proj_4545*rho_mix).tr()
Out[13]:
Create projection operator for $|+45\rangle_i$
In [14]:
Proj_45i = tensor(qeye(2),P45)*tensor(qeye(2),P45).dag()
In [15]:
(Proj_45i*rho_mix).tr()
Out[15]:
In [16]:
0.25/0.5
Out[16]:
In [17]:
(Proj_4545*rho_ent).tr() / (Proj_45i*rho_ent).tr()
Out[17]:
The photons are entanlged and therefore show perfect correlation even in the +45 measurements.