In [ ]:
import bokeh
bokeh.load_notebook()

In [ ]:
from collections import OrderedDict

import numpy as np
from bokeh.charts import Histogram

mu, sigma = 0, 0.5
normal = np.random.normal(mu, sigma, 1000)
lognormal = np.random.lognormal(mu, sigma, 1000)

distributions = OrderedDict(normal=normal, lognormal=lognormal)
normal_dist = OrderedDict(normal=normal)

hist = Histogram(normal_dist, bins=50, mu=mu, sigma=sigma,
                 title="kwargs, dict_input", ylabel="frequency", legend="top_left",
                 width=400, height=350, notebook=True)
hist.show()

In [ ]:
import pandas as pd

df = pd.DataFrame(normal_dist)
hist = Histogram(df, bins=50, mu=mu, sigma=sigma,
                 title="no_tools, df_input", ylabel="frequency", legend="top_left",
                 tools=True, width=400, height=350, notebook=True)
hist.show()

In [ ]:
from bokeh.plotting import output_notebook, show

output_notebook()
# Testing with 1D array of scalars
hist = Histogram(normal, bins=50, mu=mu, sigma=sigma,
                 title="kwargs, dict_input", ylabel="frequency", legend="top_left",
                 width=500, height=350, notebook=True)
show(hist)

In [ ]:
distributions = OrderedDict(normal=normal, lognormal=lognormal)

hist2 = Histogram(distributions, bins=50, title="kwargs, dict_input", ylabel="frequency", legend="top_left",
                 width=500, height=350, notebook=True)
show(hist2)

In [ ]:
df = pd.DataFrame(distributions)

hist = Histogram(df, bins=50,title="kwargs, dict_input", ylabel="frequency", legend="top_left",
                 width=500, height=350, notebook=True)
show(hist)

In [ ]: