In [9]:
# raytracing tutorial
# 02 - basic sphere intersection (no shading)
In [10]:
import numpy
import matplotlib.pyplot as plt
# plot images in this notebook
%matplotlib inline
In [11]:
# axes x to the right, y upwards. z into the screen (left hand rule)
In [12]:
# sphere object
class Sphere():
def __init__(self, x, y, z, r):
self.centre = numpy.array([x,y,z])
self.radius = r
pass
def status(self):
print("centre = ", self.centre)
print("radius = ", self.radius)
pass
def intersection(self, camera_location, ray_direction_vector):
# calculate quadratic determinant "b^2 - 4ac" for ray intersecting circle
b = numpy.dot(2 * ray_direction_vector,(camera_location - self.centre))
b2 = b*b
a = numpy.dot(ray_direction_vector, ray_direction_vector)
c = numpy.dot((self.centre - camera_location), (self.centre - camera_location)) - (self.radius * self.radius)
delta = b2 - (4 * a * c)
#print(delta)
return (delta >= 0)
In [13]:
# camera location
camera_location = numpy.array([0,0,-100])
# view port
view_port_location = numpy.array([-10, 0, 0])
view_port_width = 20
view_port_height = 20
# resolution (pixels per unit distance)
resolution = 4
In [14]:
# create sphere
sphere = Sphere(0,10,10,5)
sphere.status()
In [15]:
# create image
image = numpy.zeros([view_port_width * resolution, view_port_height * resolution, 3], dtype='uint8')
print("image shape = ", image.shape)
In [16]:
# main loop is to consider every pixel of the viewport
for pixel_ix in range(image.shape[0]):
for pixel_iy in range(image.shape[1]):
current_position = view_port_location + numpy.array([pixel_ix/resolution, pixel_iy/resolution, 0])
#print("current_position", current_position)
ray_direction_vector = current_position - camera_location
ray_direction_vector /= numpy.linalg.norm(ray_direction_vector)
#print(ray_direction_vector)
# calculate background sky pixel colour from vertical direction of ray
colour = 100 + int(ray_direction_vector[1] * 3 * 255)
image[pixel_ix, pixel_iy] = [50, 50, colour]
# check intersection with sphere
if sphere.intersection(camera_location, ray_direction_vector):
# colour red if true
image[pixel_ix, pixel_iy] = [200, 0, 0]
pass
pass
pass
In [17]:
# transpose array so origin is bottom left, by swapping dimensions 0 and 1, but leave dimension 3
image2 = numpy.transpose(image, (1, 0, 2))
plt.imshow(image2, origin='lower')
Out[17]:
In [ ]:
In [ ]: