In [1]:
import numpy as np
import sympy as sy
from sympy.utilities.codegen import codegen
import control.matlab as cm
import re
import matplotlib.pyplot as plt
from scipy import signal

In [7]:
z = sy.symbols('z', real=False)
r1,s0,s1 = sy.symbols('r1,s0,s1', real=True)
hh = sy.symbols('h', real=True, positive=True)

Bp = sy.poly(1, z)
Ap = sy.poly( z*(z-1), z)
Ac = sy.poly(z**2 - z + (0.5**2 + 0.25**2), z)
Ao = sy.poly(z-0.25, z)
Acl = Ac*Ao

Rp = sy.poly(z+r1, z)
Sp = sy.poly(s0*z + s1, z)
dioph=(Ap*Rp+Bp*Sp-Acl).all_coeffs()
print dioph
print Acl
print Ap*Rp
print Ac
print Ap*Rp
print Ap*Rp + Bp*Sp


[1.0*r1 + 0.25, -1.0*r1 + 1.0*s0 - 0.5625, 1.0*s1 + 0.078125]
Poly(1.0*z**3 - 1.25*z**2 + 0.5625*z - 0.078125, z, domain='RR')
Poly(z**3 + (r1 - 1)*z**2 - r1*z, z, domain='ZZ[r1]')
Poly(1.0*z**2 - 1.0*z + 0.3125, z, domain='RR')
Poly(z**3 + (r1 - 1)*z**2 - r1*z, z, domain='ZZ[r1]')
Poly(z**3 + (r1 - 1)*z**2 + (-r1 + s0)*z + s1, z, domain='ZZ[r1,s0,s1]')

In [4]:
sol = sy.solve(dioph, (r1,s0,s1))
print 'r_1 = %f' % sol[r1]
print 's_0 = %f' % sol[s0]
print 's_1 = %f' % sol[s1]

t0 = Ac.evalf(subs={z:1})/Bp.evalf(subs={z:1,})
print 't_0 = %f' % t0

R = Rp.subs(sol)
S = Sp.subs(sol)
T = t0*Ao

Hc = T*Bp/(Ac*Ao)
Hcc = t0*0.8/Ac
sy.pretty_print(sy.expand(Hc))
sy.pretty_print(sy.expand(Hcc))
sy.pretty_print(Hc.evalf(subs={z:1}))

sy.pretty_print(sy.simplify(Ap*R + Bp*S))


r_1 = -0.250000
s_0 = 0.312500
s_1 = -0.078125
t_0 = 0.312500
0.3125⋅Poly(1, z, domain='ZZ')⋅Poly(1.0*z - 0.25, z, domain='RR')
─────────────────────────────────────────────────────────────────
 Poly(1.0*z**3 - 1.25*z**2 + 0.5625*z - 0.078125, z, domain='RR')
                      0.25                     
───────────────────────────────────────────────
Poly(1.0*z**2 - 1.0*z + 0.3125, z, domain='RR')
1.00000000000000
Poly(1.0*z**3 - 1.25*z**2 + 0.5625*z - 0.078125, z, domain='RR')

In [8]:
1.0/0.3125


Out[8]:
3.2

In [53]:
num = sy.list2numpy((Ap*R).all_coeffs(), dtype=np.float64)
den = sy.list2numpy((Ac*Ao).all_coeffs(), dtype=np.float64)
print num
print den
print type(num[0])
#Hd = cm.tf(num[:-1], den[:-1], -1)
Hd = cm.tf([1], [1, 0.5])
print Hd
ystep, t = cm.step(Hd, np.arange(30))
plt.figure()
plt.plot(t, ystep)
plt.show()


[ 1.   -0.7  -0.08  0.  ]
[ 1.  -0.7  0.   0. ]
<type 'numpy.float64'>

   1
-------
s + 0.5


In [45]:
# Reorganize solution expression for matlab code generation
sol_expr = ('RST_DC_lab', [Bp.all_coeffs()[0], Bp.all_coeffs()[1],
                           Ap.all_coeffs()[1], Ap.all_coeffs()[2],
                           sol[r1], sol[s0], sol[s1], A2p.subs(z, 1)/Bp.subs(z,1), h,np.exp(h*po1) ])

In [46]:
# Export to matlab code
[(m_name, m_code)] = codegen(sol_expr, 'octave')

In [47]:
m_code = m_code.replace("out1", "b0").replace("out2", "b1").replace("out3", "a1").replace("out4", "a2")
m_code = m_code.replace("out5", "r1").replace("out6", "s0").replace("out7", "s1").replace("out8", "t0")
m_code = m_code.replace("out9", "h").replace("out10", "obsPole")
m_code = m_code.replace("function ", "% function ")
m_code = m_code.replace("end", "")
print m_code
with open("/home/kjartan/Dropbox/undervisning/tec/MR2007/labs/dc_rst_design.m", "w") as text_file:
    text_file.write(m_code)


% function [b0, b1, a1, a2, r1, s0, s1, t0, h, b00] = RST_DC_lab()
  %RST_DC_LAB  Autogenerated by sympy
  %   Code generated with sympy 0.7.6.1
  %
  %   See http://www.sympy.org/ for more information.
  %
  %   This file is part of 'project'

  b0 = 0.0905485642505141;
  b1 = 0.0860565404440641;
  a1 = -1.85841144421398;
  a2 = 0.858411444213975;
  r1 = -0.632898354797954;
  s0 = 0.37929607879435;
  s1 = -0.324459627611956;
  t0 = 0.37087688639506;
  h = 0.04;
  b00 = 0.852143788966211;




In [40]:
cm.step?

In [10]:
G = Km * cm.tf([1], [tau, 1, 0])
Gd = Km * cm.tf([tau*(hpt-1+np.exp(-hpt)), tau*(1-(1+hpt)*np.exp(-hpt))], [1, -(1+np.exp(-hpt)), np.exp(-hpt)], h)
Gd2 = cm.c2d(G, h)
print Gd
print Gd2


  0.09055 z + 0.08606
----------------------
z^2 - 1.858 z + 0.8584

dt = 0.04


  0.09055 z + 0.08606
----------------------
z^2 - 1.858 z + 0.8584

dt = 0.04


In [33]:
print A2p
print A2p.evalf(subs={z:1})
print Bp
print Bp.evalf(subs={z:1})


Poly(z**2 - 1.58555290309441*z - (-0.792776451547206 + 0.168974310731771*I)*(0.792776451547206 + 0.168974310731771*I), z, domain='EX')
0.0714939167206446
Poly(0.00133942860759726*z + 0.00124712240506047, z, domain='RR')
0.00258655101265772

In [4]:
0.3/(5*np.sqrt(2))


Out[4]:
0.042426406871192847

In [6]:
np.exp(-0.21)*np.sin(0.21)


Out[6]:
0.16897431073177133

In [7]:
np.exp(0.03*(-14))


Out[7]:
0.65704681981505675

In [42]:
0.746*41.8


Out[42]:
31.182799999999997

In [ ]: