In [2]:
import numpy as np
import sympy as sy
import control.matlab as cm
In [21]:
z = sy.symbols('z', real=False)
hh,r1,s0,s1, aa = sy.symbols('h,r1,s0,s1, a')
pc1 = -1.555-1j*1.555
pc2 = np.conjugate(pc1)
Tr = 1
omega0 = 2.2/Tr
#h = 0.2/omega0
h = Tr/10.0
a = -2*omega0
ad = sy.exp(h*a)
#ad = sy.symbols('a_d')
A2p = sy.simplify(sy.expand(sy.poly((z-np.exp(h*pc1))*(z-np.exp(h*pc2)), z))) # Desired closed loop poles
Acp = sy.simplify(sy.expand(sy.poly((z-np.exp(h*pc1))*(z-np.exp(h*pc2))*(z - ad), z))) # Desired charact polynomial
Ap = sy.poly((z-1)**2, z) # Plant denominator, double integrator
Bp = sy.poly(h**2/2*(z+1), z)
Rp = sy.poly(z+r1, z)
Sp = sy.poly(s0*z + s1, z)
dioph=(Ap*Rp+Bp*Sp-Acp).all_coeffs()
print A2p
print Acp
print dioph
In [22]:
print sy.im(sy.exp(h*pc1))
print z-sy.exp(h*a)
print z-np.exp(h*pc1)
In [13]:
sol=sy.solve(dioph, (r1,s0,s1))
print sol[r1]
print sol[s0]
print sol[s1]
t0 = A2p.evalf(subs={z:1})/Bp.evalf(subs={z:1,})
print t0
In [19]:
print A2p
1-1.69+0.737
Out[19]:
In [15]:
G = Km * cm.tf([1], [tau, 1, 0])
Gd = Km * cm.tf([tau*(hpt-1+np.exp(-hpt)), tau*(1-(1+hpt)*np.exp(-hpt))], [1, -(1+np.exp(-hpt)), np.exp(-hpt)], h)
Gd2 = cm.c2d(G, h)
print Gd
print Gd2
In [33]:
print A2p
print A2p.evalf(subs={z:1})
print Bp
print Bp.evalf(subs={z:1})
In [4]:
0.3/(5*np.sqrt(2))
Out[4]:
In [6]:
np.exp(-0.21)*np.sin(0.21)
Out[6]:
In [7]:
np.exp(0.03*(-14))
Out[7]:
In [ ]: