In [1]:
import numpy as np
import sympy as sy
import control.matlab as cm
In [2]:
z = sy.symbols('z', real=False)
hh,a,r1,s0,s1 = sy.symbols('h,a,r1,s0,s1')
tau = 0.262
pc1 = -5-1j*5
pc2 = np.conjugate(pc1)
h = 0.04
hpt = h/tau
Km = 0.746*41.8
A2p = sy.poly((z-np.exp(h*pc1))*(z-np.exp(h*pc2)), z)
Acp = sy.poly((z-np.exp(h*pc1))*(z-np.exp(h*pc2))*(z - sy.exp(h*a)), z)
Ap = sy.poly((z-1)*(z-np.exp(-hpt)), z)
Bp = sy.poly(Km*tau*(hpt-1+np.exp(-hpt))*z + Km*tau*(1-np.exp(-hpt)-hpt*np.exp(-hpt)), z)
Rp = sy.poly(z+r1, z)
Sp = sy.poly(s0*z + s1, z)
dioph=(Ap*Rp+Bp*Sp-Acp).all_coeffs()
In [3]:
sol=sy.solve(dioph, (r1,s0,s1))
print sol[r1]
print sol[s0]
print sol[s1]
t0 = A2p.evalf(subs={z:1})/Bp.evalf(subs={z:1,})
print t0
In [15]:
G = Km * cm.tf([1], [tau, 1, 0])
Gd = Km * cm.tf([tau*(hpt-1+np.exp(-hpt)), tau*(1-(1+hpt)*np.exp(-hpt))], [1, -(1+np.exp(-hpt)), np.exp(-hpt)], h)
Gd2 = cm.c2d(G, h)
print Gd
print Gd2
In [33]:
print A2p
print A2p.evalf(subs={z:1})
print Bp
print Bp.evalf(subs={z:1})
In [4]:
0.3/(5*np.sqrt(2))
Out[4]:
In [6]:
np.exp(-0.21)*np.sin(0.21)
Out[6]:
In [7]:
np.exp(0.03*(-14))
Out[7]:
In [ ]: