In [25]:
import numpy as np
import sympy as sy
import control.matlab as cm

In [18]:
s,z = sy.symbols('s,z', real=False)
h,t = sy.symbols('h,t', real=True, positive=True)

In [9]:
G = (s+1)/(s+2)
Ya = sy.apart(G/s**2)

In [15]:
ya = sy.inverse_laplace_transform(Ya, s, t)
print sy.pretty_print(ya)
print sy.latex(ya)


         -2⋅t
t   1   ℯ    
─ + ─ - ─────
2   4     4  
None
\frac{t}{2} + \frac{1}{4} - \frac{1}{4 e^{2 t}}

In [19]:
num= 2*h*(z-sy.exp(-2*h)) + (z-1)*(z-sy.exp(-2*h)) - (z-1)**2

In [24]:
print sy.latex(sy.collect(sy.simplify(num), z))
print sy.pretty_print(sy.collect(sy.simplify(num), z))


- \frac{2 h}{e^{2 h}} + z \left(2 h + 1 - e^{- 2 h}\right) - 1 + e^{- 2 h}
       -2⋅h     ⎛           -2⋅h⎞        -2⋅h
- 2⋅h⋅ℯ     + z⋅⎝2⋅h + 1 - ℯ    ⎠ - 1 + ℯ    
None

In [26]:
cm.c2d??

In [ ]: