In [7]:
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
from astropy.coordinates import SkyCoord
from astropy import units as u
from astropy import table
import pandas as pd
#https://github.com/jobovy/gaia_tools
import gaia_tools.load as gload
from gaia_tools import xmatch
import read_data as rd
import seaborn as sns
In [2]:
tgas = rd.load_tgas_df()
In [16]:
parallax_quality = tgas["parallax_error"]/tgas["parallax"]
parallax_quality_cut = np.logical_and(parallax_quality >=0, parallax_quality < 0.5)
plt.figure()
sns.boxplot(parallax_quality)
plt.figure()
sns.boxplot(parallax_quality[parallax_quality_cut])
Out[16]:
In [13]:
Out[13]:
In [45]:
# Unit: mas/yr
pmra_quality = np.abs(tgas["pmra_error"]/tgas["pmra"])
pmdec_quality= np.abs(tgas["pmdec_error"]/tgas["pmdec"])
pmra_quality_cut = np.logical_and(pmra_quality >=0, pmra_quality < 0.5)
pmdec_quality_cut = np.logical_and(pmdec_quality >=0, pmdec_quality < 0.5)
plt.figure()
sns.boxplot(pmra_quality[pmra_quality_cut])
plt.figure()
sns.boxplot(pmdec_quality[pmdec_quality_cut])
#sns.boxplot(parallax_quality[parallax_quality_cut])
Out[45]:
In [46]:
for quality_cut in [parallax_quality_cut,pmra_quality_cut,pmdec_quality_cut]:
print "{} bad".format(len(tgas)-np.sum(quality_cut))
#tgas_par = tgas[parallax_quality_cut]
#print "{} bad parallaxes".format(len(tgas)-len(tgas_par))
goodii = np.logical_and(np.logical_and(pmra_quality_cut,pmdec_quality_cut),parallax_quality_cut)
print np.sum(goodii)
tgas_good = tgas[goodii]
In [47]:
def contourbin(x,y,binx=None,biny=None,ax=None,**kwargs):
if binx is not None and biny is not None:
h,xe,ye = np.histogram2d(np.array(x),np.array(y),bins=[binx,biny])
else:
h,xe,ye = np.histogram2d(np.array(x),np.array(y))
xmid = (xe[1:]+xe[:-1])/2.0
ymid = (ye[1:]+ye[:-1])/2.0
X, Y = np.meshgrid(xmid,ymid)
ax.contour(X,Y,h.T,**kwargs)
In [44]:
tgas.columns
Out[44]:
In [37]:
fig,ax = plt.subplots()
#plt.plot(tgas["phot_g_mean_mag"][parallax_quality_cut],parallax_quality[parallax_quality_cut],'k.')
contourbin(tgas["phot_g_mean_mag"][parallax_quality_cut],parallax_quality[parallax_quality_cut],ax=ax)
In [48]:
v_ra = tgas_good['pmra']/tgas_good['parallax'] * 4.762
v_dec= tgas_good['pmdec']/tgas_good['parallax']* 4.762
In [49]:
plt.figure()
plt.plot(v_ra,v_dec,'k.')
Out[49]:
In [43]:
np.min(v_dec)
Out[43]:
In [ ]: