In [12]:
import numpy as np
from validata import check
In [13]:
np.random.seed(0)
data = np.random.randn(100,4)
In [17]:
reload(check)
check.check(data)
In [18]:
data[:,0] = 0
check.check(data)
In [ ]:
data[:,0] = np.random.randn(100)
for i in range(1,4):
data[:,i] = data[:,0]+np.random.randn(100)*1e-6
check.check(data)
In [53]:
labels = np.random.randint(0,2,100)
In [56]:
from sklearn.preprocessing import OneHotEncoder
onehot_labels = OneHotEncoder(n_values=2).fit_transform(labels[:,None]).toarray()
In [68]:
assert check.labels_are_one_hot(onehot_labels) == True
assert check.labels_are_one_hot(labels) == False
In [70]:
check.check_labels_are_1d_or_2d(onehot_labels)
check.check_labels_are_1d_or_2d(labels)
In [90]:
a = np.array(['a']*30)
In [72]:
check.check_all_classes_used(onehot_labels)