In [2]:
require 'nn'
require 'optim'
path = require 'pl.path'
whetlab = require('whetlab')

In [3]:
-- Classes to predict:
classes = {'0','1','2','3','4','5','6','7','8','9'}

In [4]:
iopt = {model="cnn", optimization="sgd", localData=true, cuda=false}

In [5]:
batchChoices = {50,100,250,500,1000}
whetlabJob = {momentum=0.25, batchChoice=2, dropout=0.0, layerSize=500}
whetlabJob.learningRates = {
    1e-1,
    1e-1,
    1e-1,
    1e-1,
    1e-1,
    1e-1,
    1e-1,
    1e-1
}

whetlabJob.weightDecays = {
    1e-5,
    1e-5,
    1e-5,
    1e-5,
    1e-5,
    1e-5,
    1e-5,
    1e-5
}

whetlabJob.initialScale = {
    1.5e-1,
    1.5e-1,
    1.5e-1,
    1.5e-1,
    1.5e-1,
    1.5e-1,
    1.5e-1,
    1.5e-1
}

In [6]:
opt = {
   learningRate = whetlabJob.learningRate,
   momentum = whetlabJob.momentum,
   weightDecay = whetlabJob.weightDecay,
   network = '',
   cuda = iopt.cuda,
   batchSize = batchChoices[whetlabJob.batchChoice],
   nEpochs = 50,
   loss = 'nll',
   model = iopt.model,
   optimization = iopt.optimization,
   cnn = {
      clayers = {
         {1,32,5,5},
         {32,64,5,5},
      },
      players = {
         {3,3,3,3},
         {2,2,2,2},
      },
      lunit = nn.Linear,
      punit = nn.SpatialMaxPooling,
      nunit = nn.ReLU,
      cunit = nn.SpatialConvolutionMM,
   },
   linear = {dropout=whetlabJob.dropout}
}

In [7]:
startingSize = 64*2*2

opt.cnn.llayers = {
    {64*2*2, whetlabJob.layerSize},
    {whetlabJob.layerSize, #classes},
}
opt.cnn.dropout = whetlabJob.dropout

In [8]:
-- Do everything with floats:
torch.setdefaulttensortype('torch.FloatTensor')

-- Fix seed
torch.manualSeed(1)

-- CUDA
if opt.cuda then
   require 'cunn'
   cutorch.manualSeed(1)
end

-- Define model to train
model = nn.Sequential()
-- define model to train
model = nn.Sequential()

-- build cnn:
for i,clayer in ipairs(opt.cnn.clayers) do
 model:add(opt.cnn.cunit(unpack(clayer)))
 model:add(opt.cnn.nunit())
 local player = opt.cnn.players[i]
 if player then
    model:add(opt.cnn.punit(unpack(player)))
 end
end

model:add(nn.Reshape(opt.cnn.llayers[1][1]))
for i,llayer in ipairs(opt.cnn.llayers) do
 model:add(opt.cnn.lunit(unpack(llayer)))
 if i < #opt.cnn.llayers then
    if opt.cnn.dropout > 0 then
       model:add(nn.Dropout(opt.cnn.dropout))
    end
    model:add(opt.cnn.nunit())
 end
end

In [9]:
-- Loss function (negative log-likelihood)
model:add(nn.LogSoftMax())
loss = nn.ClassNLLCriterion()

In [10]:
-- move model to CUDA?
if opt.cuda then
   model:cuda()
   loss:cuda()
end

In [11]:
-- retrieve parameters and gradients
parameters,gradParameters = model:getParameters()

In [12]:
-- Set per-layer learning rates (separate or biases and weights)
params,_ = model:parameters()
paramSizes = {0}
for i=1,#params do
    paramSizes[i+1] = torch.numel(params[i])
end
boundaries = torch.cumsum(torch.Tensor(paramSizes))
start = boundaries[{{1,torch.numel(boundaries)-1}}]+1
stop = boundaries[{{2,torch.numel(boundaries)}}]
learningRates = torch.zeros(parameters:size(1))
weightDecays = torch.zeros(parameters:size(1))

for i=1,#whetlabJob.learningRates do
    learningRates[{{start[i],stop[i]}}] = whetlabJob.learningRates[i]
    weightDecays[{{start[i],stop[i]}}] = whetlabJob.weightDecays[i]
end

In [13]:
-- verbose
print('using model:')
print(model)


Out[13]:
using model:	
nn.Sequential {
  [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> output]
  (1): nn.SpatialConvolutionMM
  (2): nn.ReLU
  (3): nn.SpatialMaxPooling
  (4): nn.SpatialConvolutionMM
  (5): nn.ReLU
  (6): nn.SpatialMaxPooling
  (7): nn.Reshape(256)
  (8): nn.Linear(256 -> 500)
  (9): nn.ReLU
  (10): nn.Linear(500 -> 10)
  (11): nn.LogSoftMax
}
{
  output : FloatTensor - empty
  gradInput : FloatTensor - empty
  modules : 
    {
      1 : 
        nn.SpatialConvolutionMM
        {
          padding : 0
          kW : 5
          nInputPlane : 1
          gradBias : FloatTensor - size: 32
          dW : 1
          gradWeight : FloatTensor - size: 32x25
          output : FloatTensor - empty
          fgradInput : FloatTensor - empty
          finput : FloatTensor - empty
          bias : FloatTensor - size: 32
          weight : FloatTensor - size: 32x25
          nOutputPlane : 32
          gradInput : FloatTensor - empty
          kH : 5
          dH : 1
        }
      2 : 
        nn.ReLU
        {
          val : 0
          output : FloatTensor - empty
          gradInput : FloatTensor - empty
          threshold : 0
        }
      3 : 
        nn.SpatialMaxPooling
        {
          kW : 3
          kH : 3
          indices : FloatTensor - empty
          dW : 3
          gradInput : FloatTensor - empty
          output : FloatTensor - empty
          dH : 3
        }
      4 : 
        nn.SpatialConvolutionMM
        {
          padding : 0
          kW : 5
          nInputPlane : 32
          gradBias : FloatTensor - size: 64
          dW : 1
          gradWeight : FloatTensor - size: 64x800
          output : FloatTensor - empty
          fgradInput : FloatTensor - empty
          finput : FloatTensor - empty
          bias : FloatTensor - size: 64
          weight : FloatTensor - size: 64x800
          nOutputPlane : 64
          gradInput : FloatTensor - empty
          kH : 5
          dH : 1
        }
      5 : 
        nn.ReLU
        {
          val : 0
          output : FloatTensor - empty
          gradInput : FloatTensor - empty
          threshold : 0
        }
      6 : 
        nn.SpatialMaxPooling
        {
          kW : 2
          kH : 2
          indices : FloatTensor - empty
          dW : 2
          gradInput : FloatTensor - empty
          output : FloatTensor - empty
          dH : 2
        }
      7 : 
        nn.Reshape(256)
        {
          _gradOutput : FloatTensor - empty
          size : LongStorage - size: 1
          nelement : 256
          _input : FloatTensor - empty
          batchsize : LongStorage - size: 2
          output : FloatTensor - empty
          gradInput : FloatTensor - empty
        }
      8 : 
        nn.Linear(256 -> 500)
        {
          bias : FloatTensor - size: 500
          weight : FloatTensor - size: 500x256
          gradInput : FloatTensor - empty
        
Out[13]:
  gradBias : FloatTensor - size: 500
          gradWeight : FloatTensor - size: 500x256
          output : FloatTensor - empty
        }
      9 : 
        nn.ReLU
        {
          val : 0
          output : FloatTensor - empty
          gradInput : FloatTensor - empty
          threshold : 0
        }
      10 : 
        nn.Linear(500 -> 10)
        {
          bias : FloatTensor - size: 10
          weight : FloatTensor - size: 10x500
          gradInput : FloatTensor - empty
          gradBias : FloatTensor - size: 10
          gradWeight : FloatTensor - size: 10x500
          output : FloatTensor - empty
        }
      11 : 
        nn.LogSoftMax
        {
          gradInput : FloatTensor - empty
          output : FloatTensor - empty
        }
    }
}

In [14]:
-- Get/create dataset
if not path.exists('mnist') then
  os.execute[[
     curl https://s3.amazonaws.com/torch.data/mnist.tgz -o mnist.tgz
     tar xvf mnist.tgz
     rm mnist.tgz 
  ]]
end

validData = {}
trainData = torch.load('mnist/train.t7')
testData = torch.load('mnist/test.t7')

-- Update data set sizes
-- validData = testData
validData.x = trainData.x[{{50001,-1},{}}]
validData.y = trainData.y[{{50001,-1}}]
validData.size = 10000
trainData.x = trainData.x[{{1,50000},{}}]
trainData.y = trainData.y[{{1,50000}}]
trainData.size = 50000

In [15]:
-- CUDA?
if opt.cuda then
   trainData.x = trainData.x:cuda()
   trainData.y = trainData.y:cuda()
   validData.x = validData.x:cuda()
   validData.y = validData.y:cuda()
   testData.x = testData.x:cuda()
   testData.y = testData.y:cuda()
end

In [16]:
-- Normalize data:
-- (Note: we usually make data std=1, but with ReLU activations, much higher variance
--  accelerates learning by quite a bit)
local std = trainData.x:std()
print('normalizing (standard deviation = ' .. std .. ')')
trainData.x:mul(1/std)
validData.x:mul(1/std)


Out[16]:
normalizing (standard deviation = 0.2755747643016)	

In [17]:
-- this matrix records the current confusion across classes
confusion = optim.ConfusionMatrix(classes)

In [18]:
-- a function to make a mini batch
inputs, targets = {}, {}
function makeBatch(dataset,didx)
   inputs = dataset.x[{ {didx,didx+opt.batchSize-1} }]
   targets = dataset.y[{ {didx,didx+opt.batchSize-1} }]
end

In [19]:
-- create closure to evaluate f(X) and df/dX
fgeval = function()
   -- reset gradients
   gradParameters:zero()

   -- evaluate function for complete mini batch
   local outputs = model:forward(inputs)
   local f = loss:forward(outputs, targets)

   -- estimate df/dW
   local df_do = loss:backward(outputs, targets)
   model:backward(inputs, df_do)

   -- update confusion
   for i = 1,opt.batchSize do
      confusion:add(outputs[i], targets[i])
   end

   -- return f and df/dX
   return f,gradParameters
end

In [20]:
-- create closure to evaluate f(X)
feval = function()
   -- evaluate function for complete mini batch
   local outputs = model:forward(inputs)
   local f = loss:forward(outputs, targets)

   -- update confusion
   for i = 1,opt.batchSize do
      confusion:add(outputs[i], targets[i])
   end

   -- return f and df/dX
   return f
end

In [21]:
-- Find out the indices of layers with weights
acc = {}
for i=1,#model.modules do
    if model.modules[i].weight then
        acc[#acc+1] = i
    end
end

-- Now initialize those layers in a dope manner
for i=1,#acc do
    layerIdx = acc[i]
    model.modules[layerIdx]:reset()
    weightScale = whetlabJob.initialScale[(i*2)-1]
    biasScale = whetlabJob.initialScale[(i*2)]
    model.modules[layerIdx].weight:mul(weightScale)
    model.modules[layerIdx].bias:mul(biasScale)
end

In [22]:
-- Use simple SGD (first-order method):
optimState = {
    learningRate = 1.0, -- learningRates scales the learningRate, which defaults to 1e-3.
    learningRates = learningRates,
    momentum = opt.momentum,
    weightDecays = weightDecays,
}
optimFunc = optim.sgd

In [23]:
-- training function
function train(epoch)
   -- restore dropout
   model:training()

   -- do one epoch
   print('')
   print('on training set:')
   print("online epoch # " .. epoch .. ' [batchSize = ' .. opt.batchSize .. ']')

   -- loop:
   for t = 1,trainData.size,opt.batchSize do
      -- Data idx:
      makeBatch(trainData, t)

      -- Perform SGD step:
      optimFunc(fgeval, parameters, optimState)

      -- disp progress
      -- xlua.progress(t, trainData.size)
   end

   -- print confusion matrix
   print('')
   print(confusion)
   confusion:zero()
end

In [24]:
-- test function
perf = 0
noProgress = 0
backwardProgress = 0

function test(epoch)
   -- shutdown dropout for testing
   model:evaluate()

   -- test over given dataset
   print('on testing Set:')
   for t = 1,validData.size,opt.batchSize do
      -- create mini batch
      makeBatch(validData, t)

      -- evaluate f(x)
      feval()
   end

    -- print confusion matrix
    print('')
    print(confusion)

    -- track performance and adjust learning rate (sgd only:
    if opt.optimization == 'sgd' then
        if confusion.totalValid < (perf + .001) then
            optimState.learningRates = torch.clamp(optimState.learningRates/2.0, 1e-5, math.huge)
        end
        
        if confusion.totalValid < perf and optimState.learningRate == 1e-5 then
            backwardProgress = backwardProgress + 1
        elseif confusion.totalValid < (perf + .001) and optimState.learningRate == 1e-5 then
            noProgress = noProgress + 1
        else
            noProgress = 0
            backwardProgress = 0
        end
    end
    perf = confusion.totalValid
   -- log results, and model:
   -- logScore(epoch)
    
    print("\n\n")
    print("No Progress Iter: " .. noProgress)
    print("Backward Progress Iter: " .. backwardProgress)
    print("\n\n")
    
   -- reset
   confusion:zero()

   return perf
end

In [25]:
-- and train!
for epoch = 1,40 do -- opt.nEpochs do
   -- train:
   train(epoch)

   -- test:
   perf = test(epoch)
end


Out[25]:
	
on training set:	
online epoch # 1 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     180    4751       1       0       0       0       0       0       0       0]   3.650% 	[class: 0]
 [       5    5672       1       0       0       0       0       0       0       0]   99.894% 	[class: 1]
 [     106    4851      11       0       0       0       0       0       0       0]   0.221% 	[class: 2]
 [      88    4996      17       0       0       0       0       0       0       0]   0.000% 	[class: 3]
 [     108    4747       4       0       0       0       0       0       0       0]   0.000% 	[class: 4]
 [      89    4411       6       0       0       0       0       0       0       0]   0.000% 	[class: 5]
 [     107    4841       3       0       0       0       0       0       0       0]   0.000% 	[class: 6]
 [      62    5092      12       0       0       0       0       9       0       0]   0.174% 	[class: 7]
 [      77    4748      15       2       0       0       0       0       0       0]   0.000% 	[class: 8]
 [     101    4881       5       1       0       0       0       0       0       0]]  0.000% 	[class: 9]
 + average row correct: 10.393929191632% 
 + average rowUcol correct (VOC measure): 1.5140775113832% 
 + global correct: 11.744%
{
  averageUnionValid : 0.015140775113832
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.11744
  _prediction : FloatTensor - size: 10
  averageValid : 0.10393929191632
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     988       3       0       0       0       0       0       0       0       0]   99.697% 	[class: 0]
 [      37    1011       9       7       0       0       0       0       0       0]   95.019% 	[class: 1]
 [     933      25      28       4       0       0       0       0       0       0]   2.828% 	[class: 2]
 [     944      47       4      35       0       0       0       0       0       0]   3.398% 	[class: 3]
 [     936      40       0       7       0       0       0       0       0       0]   0.000% 	[class: 4]
 [     853      58       4       0       0       0       0       0       0       0]   0.000% 	[class: 5]
 [     899      55      13       0       0       0       0       0       0       0]   0.000% 	[class: 6]
 [     906     119       5      56       0       0       0       4       0       0]   0.367% 	[class: 7]
 [     869     103      23      14       0       0       0       0       0       0]   0.000% 	[class: 8]
 [     873      67       0      21       0       0       0       0       0       0]]  0.000% 	[class: 9]
 + average row correct: 20.130938561633% 
 + average rowUcol correct (VOC measure): 8.2047302555293% 
 + global correct: 20.66%
{
  averageUnionValid : 0.082047302555293
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
Out[25]:
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.2066
  _prediction : FloatTensor - size: 10
  averageValid : 0.20130938561633
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 2 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4529      19      20      31      29      62      60     111      60      11]   91.829% 	[class: 0]
 [       5    5464      41      60      12       7      18      26      41       4]   96.231% 	[class: 1]
 [     290     191    3906     161      72      14     103     115     103      13]   78.623% 	[class: 2]
 [     236     185     254    3747      31     151      39     241     160      57]   73.456% 	[class: 3]
 [     303      35      26       9    3835      11     153     122      38     327]   78.926% 	[class: 4]
 [     343     129      57     186      90    3080     182     105     229     105]   68.353% 	[class: 5]
 [     305     163      44      14     148      83    4102      31      49      12]   82.852% 	[class: 6]
 [     209     118      88      93      72      10       5    4241      41     298]   81.952% 	[class: 7]
 [     263     262     106     227      91     210     112     144    3289     138]   67.926% 	[class: 8]
 [     245      82      23      66     410      69      20     408      81    3584]]  71.852% 	[class: 9]
 + average row correct: 79.200088381767% 
 + average rowUcol correct (VOC measure): 65.827092528343% 
 + global correct: 79.554%
{
  averageUnionValid : 0.65827092528343
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.79554
  _prediction : FloatTensor - size: 10
  averageValid : 0.79200088381767
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     978       0       1       0       0       0       4       4       0       4]   98.688% 	[class: 0]
 [       0    1060       1       0       0       0       0       3       0       0]   99.624% 	[class: 1]
 [       5      11     902       9       2       0       1      54       5       1]   91.111% 	[class: 2]
 [       1       0       2    1002       1       7       0       7       1       9]   97.282% 	[class: 3]
 [       1       8       0       0     942       0       9       2       0      21]   95.829% 	[class: 4]
 [      11       0       0      17       3     853      17       3       3       8]   93.224% 	[class: 5]
 [       5       2       0       0       4       1     954       0       1       0]   98.656% 	[class: 6]
 [       1       4       0       1       1       0       0    1079       0       4]   98.991% 	[class: 7]
 [      12      15       3      16       4       3      11      13     905      27]   89.693% 	[class: 8]
 [       4       3       0       3      12       2       0      32       0     905]]  94.173% 	[class: 9]
 + average row correct: 95.727001428604% 
 + average rowUcol correct (VOC measure): 91.951560378075% 
 + global correct: 95.8%
{
  averageUnionValid : 0.91951560378075
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
Out[25]:
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.958
  _prediction : FloatTensor - size: 10
  averageValid : 0.95727001428604
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 3 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4844       3      10       1       3      12      32       1      17       9]   98.216% 	[class: 0]
 [       1    5589      29       8       6       0       4      13      24       4]   98.433% 	[class: 1]
 [      10      18    4786      44      12       3       2      59      32       2]   96.337% 	[class: 2]
 [       4       6      47    4911       1      39       3      29      36      25]   96.275% 	[class: 3]
 [       6       4       8       0    4717       0      31      15       9      69]   97.078% 	[class: 4]
 [      13       2       3      36       3    4377      24       5      29      14]   97.137% 	[class: 5]
 [      28       6       2       2      19      22    4852       0      20       0]   98.000% 	[class: 6]
 [       6      15      61      13      12       5       0    5003       7      53]   96.676% 	[class: 7]
 [      13      27      28      35      19      27      20      10    4613      50]   95.271% 	[class: 8]
 [      27       5       3      28      49      19       3      54      29    4771]]  95.650% 	[class: 9]
 + average row correct: 96.907165646553% 
 + average rowUcol correct (VOC measure): 94.01674926281% 
 + global correct: 96.926%
{
  averageUnionValid : 0.9401674926281
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
Out[25]:
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.96926
  _prediction : FloatTensor - size: 10
  averageValid : 0.96907165646553
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     981       0       2       0       0       0       3       1       1       3]   98.991% 	[class: 0]
 [       0    1060       1       0       0       0       1       2       0       0]   99.624% 	[class: 1]
 [       1       8     954       0       3       0       1      21       1       1]   96.364% 	[class: 2]
 [       2       1       5     988       1      11       0       5       6      11]   95.922% 	[class: 3]
 [       0       6       0       0     958       0       9       2       1       7]   97.457% 	[class: 4]
 [       4       0       0       3       1     891      14       1       0       1]   97.377% 	[class: 5]
 [       1       0       0       0       0       1     965       0       0       0]   99.793% 	[class: 6]
 [       0       4       0       0       1       0       0    1078       2       5]   98.899% 	[class: 7]
 [       4       3       1       3       1       5      17       4     963       8]   95.441% 	[class: 8]
 [       4       3       0       3      13       5       0      12       2     919]]  95.630% 	[class: 9]
 + average row correct: 97.549760341644% 
 + average rowUcol correct (VOC measure): 95.243304371834% 
 + global correct: 97.57%
{
  averageUnionValid : 0.95243304371834
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9757
  _prediction : FloatTensor - size: 10
  averageValid : 0.97549760341644
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 4 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4878       3       8       1       5       3      17       0      10       7]   98.905% 	[class: 0]
 [       1    5626      16       4       2       0       3      12      11       3]   99.084% 	[class: 1]
 [      11      10    4856      25       5       1       2      39      18       1]   97.746% 	[class: 2]
 [       3       2      29    4985       0      27       1      17      18      19]   97.726% 	[class: 3]
 [       7       2       5       0    4779       1      15       6       8      36]   98.354% 	[class: 4]
 [      10       2       3      20       3    4419      16       3      23       7]   98.069% 	[class: 5]
 [      20       5       3       1       8      12    4889       0      13       0]   98.748% 	[class: 6]
 [       3      15      35      10      11       2       0    5060       7      32]   97.778% 	[class: 7]
 [      10      21      22      22      11      14      17       9    4686      30]   96.778% 	[class: 8]
 [      18       1       1      15      31      12       3      39      19    4849]]  97.213% 	[class: 9]
 + average row correct: 98.040062189102% 
 + average rowUcol correct (VOC measure): 96.167304515839% 
 + global correct: 98.054%
{
  averageUnionValid : 0.96167304515839
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.98054
  _prediction : FloatTensor - size: 10
  averageValid : 0.98040062189102
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     981       0       1       0       0       1       3       1       1       3]   98.991% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       6     970       0       0       0       1      11       1       0]   97.980% 	[class: 2]
 [       1       0       4    1004       1      12       0       2       4       2]   97.476% 	[class: 3]
 [       0       5       0       0     959       1       8       3       1       6]   97.558% 	[class: 4]
 [       4       0       0       3       1     893      13       0       0       1]   97.596% 	[class: 5]
 [       0       0       0       0       0       2     965       0       0       0]   99.793% 	[class: 6]
 [       0       3       1       0       0       0       0    1083       2       1]   99.358% 	[class: 7]
 [       3       3       2       3       1       7      20       0     966       4]   95.738% 	[class: 8]
 [       3       3       0       2      10      10       0       8       1     924]]  96.150% 	[class: 9]
 + average row correct: 98.026378750801% 
 + average rowUcol correct (VOC measure): 96.138559579849% 
 + global correct: 98.05%
{
  averageUnionValid : 0.96138559579849
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9805
  _prediction : FloatTensor - size: 10
  averageValid : 0.98026378750801
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 5 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4892       3       4       1       3       4      13       2       4       6]   99.189% 	[class: 0]
 [       1    5642      10       3       2       0       1      10       7       2]   99.366% 	[class: 1]
 [       5       8    4887      15       5       0       2      31      14       1]   98.370% 	[class: 2]
 [       2       1      22    5013       0      22       1      15      12      13]   98.275% 	[class: 3]
 [       4       1       5       0    4798       2      11       6       8      24]   98.745% 	[class: 4]
 [       5       2       4      20       1    4434      12       4      18       6]   98.402% 	[class: 5]
 [      18       4       1       0       7       9    4898       0      14       0]   98.930% 	[class: 6]
 [       3      12      28       8      10       1       0    5087       7      19]   98.300% 	[class: 7]
 [       7      16      19      18      10      13      14       5    4718      22]   97.439% 	[class: 8]
 [      10       1       0      11      24      10       2      30      15    4885]]  97.935% 	[class: 9]
 + average row correct: 98.49492251873% 
 + average rowUcol correct (VOC measure): 97.044394016266% 
 + global correct: 98.508%
{
  averageUnionValid : 0.97044394016266
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.98508
  _prediction : FloatTensor - size: 10
  averageValid : 0.9849492251873
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     980       0       1       0       0       2       3       1       1       3]   98.890% 	[class: 0]
 [       0    1061       0       0       0       0       2       1       0       0]   99.718% 	[class: 1]
 [       1       4     976       0       1       0       1       7       0       0]   98.586% 	[class: 2]
 [       1       0       5    1006       0      13       0       1       3       1]   97.670% 	[class: 3]
 [       0       7       0       0     960       1       4       3       1       7]   97.660% 	[class: 4]
 [       2       0       1       3       0     895      13       0       0       1]   97.814% 	[class: 5]
 [       0       0       0       0       0       1     966       0       0       0]   99.897% 	[class: 6]
 [       0       3       1       0       0       0       0    1082       2       2]   99.266% 	[class: 7]
 [       3       3       3       2       1       6      15       0     971       5]   96.234% 	[class: 8]
 [       3       3       0       2      10       6       0       6       1     930]]  96.774% 	[class: 9]
 + average row correct: 98.250897526741% 
 + average rowUcol correct (VOC measure): 96.564480662346% 
 + global correct: 98.27%
{
  averageUnionValid : 0.96564480662346
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
Out[25]:
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9827
  _prediction : FloatTensor - size: 10
  averageValid : 0.98250897526741
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 6 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4908       2       3       0       2       2       8       1       1       5]   99.513% 	[class: 0]
 [       0    5645       5       3       3       0       2      10       8       2]   99.419% 	[class: 1]
 [       5       6    4912       8       5       0       2      20       9       1]   98.873% 	[class: 2]
 [       2       1      18    5030       0      17       1      11       8      13]   98.608% 	[class: 3]
 [       2       1       5       0    4813       1      10       4       6      17]   99.053% 	[class: 4]
 [       2       1       3      16       1    4455      12       2      11       3]   98.868% 	[class: 5]
 [      15       3       1       0       6       8    4906       0      12       0]   99.091% 	[class: 6]
 [       3      12      21       6      10       0       0    5103       6      14]   98.609% 	[class: 7]
 [       5      10      13      14       4      10      14       5    4752      15]   98.141% 	[class: 8]
 [       8       2       0       7      19      11       1      23      13    4904]]  98.316% 	[class: 9]
 + average row correct: 98.849158883095% 
 + average rowUcol correct (VOC measure): 97.727466821671% 
 + global correct: 98.856%
{
  averageUnionValid : 0.97727466821671
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.98856
  _prediction : FloatTensor - size: 10
  averageValid : 0.98849158883095
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     975       0       2       0       0       5       4       1       1       3]   98.385% 	[class: 0]
 [       0    1061       0       0       0       0       2       1       0       0]   99.718% 	[class: 1]
 [       1       4     977       0       1       0       1       6       0       0]   98.687% 	[class: 2]
 [       0       0       5    1008       0      12       0       1       4       0]   97.864% 	[class: 3]
 [       0       7       0       0     961       1       3       3       1       7]   97.762% 	[class: 4]
 [       1       0       0       3       0     897      12       0       1       1]   98.033% 	[class: 5]
 [       0       0       0       0       0       1     966       0       0       0]   99.897% 	[class: 6]
 [       0       3       1       0       0       0       0    1083       1       2]   99.358% 	[class: 7]
 [       3       3       3       2       0       6      12       0     976       4]   96.729% 	[class: 8]
 [       3       1       0       1      10       6       0       3       1     936]]  97.399% 	[class: 9]
 + average row correct: 98.383156061172% 
 + average rowUcol correct (VOC measure): 96.814914941788% 
 + global correct: 98.4%
{
  averageUnionValid : 0.96814914941788
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.984
  _prediction : FloatTensor - size: 10
  averageValid : 0.98383156061172
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 7 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4911       1       2       0       2       0       8       0       3       5]   99.574% 	[class: 0]
 [       0    5652       3       1       3       0       1      10       7       1]   99.542% 	[class: 1]
 [       4       5    4922       8       4       0       2      14       8       1]   99.074% 	[class: 2]
 [       2       0      17    5043       0      12       1       8      10       8]   98.863% 	[class: 3]
 [       1       1       5       0    4818       1       8       6       3      16]   99.156% 	[class: 4]
 [       2       1       2      10       1    4466       9       2      11       2]   99.112% 	[class: 5]
 [      12       2       2       0       5       7    4915       0       8       0]   99.273% 	[class: 6]
 [       3      11      17       4       7       0       0    5115       6      12]   98.841% 	[class: 7]
 [       3       8       9      14       2      10       8       4    4771      13]   98.534% 	[class: 8]
 [       6       2       0       6      18       9       1      21      10    4915]]  98.536% 	[class: 9]
 + average row correct: 99.050545692444% 
 + average rowUcol correct (VOC measure): 98.121281266212% 
 + global correct: 99.056%
{
  averageUnionValid : 0.98121281266212
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.99056
  _prediction : FloatTensor - size: 10
  averageValid : 0.99050545692444
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     973       0       3       0       0       6       4       1       1       3]   98.184% 	[class: 0]
 [       0    1061       0       0       0       0       2       1       0       0]   99.718% 	[class: 1]
 [       1       3     978       0       1       0       1       6       0       0]   98.788% 	[class: 2]
 [       0       0       3    1017       0       8       0       0       2       0]   98.738% 	[class: 3]
 [       0       7       0       0     963       0       2       3       1       7]   97.965% 	[class: 4]
 [       1       0       0       3       0     899      10       0       1       1]   98.251% 	[class: 5]
 [       0       0       0       0       0       1     966       0       0       0]   99.897% 	[class: 6]
 [       0       3       1       0       0       0       0    1082       1       3]   99.266% 	[class: 7]
 [       3       2       1       3       0       4      11       0     981       4]   97.225% 	[class: 8]
 [       3       0       0       1       8       4       0       2       1     942]]  98.023% 	[class: 9]
 + average row correct: 98.605473041534% 
 + average rowUcol correct (VOC measure): 97.247789502144% 
 + global correct: 98.62%
{
  averageUnionValid : 0.97247789502144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9862
  _prediction : FloatTensor - size: 10
  averageValid : 0.98605473041534
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 8 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4919       1       1       0       2       0       3       1       3       2]   99.736% 	[class: 0]
 [       0    5658       2       1       2       0       1       9       5       0]   99.648% 	[class: 1]
 [       2       4    4936       3       3       0       2      11       6       1]   99.356% 	[class: 2]
 [       2       0      11    5060       0      10       0       7       7       4]   99.196% 	[class: 3]
 [       1       1       4       0    4825       0       7       6       2      13]   99.300% 	[class: 4]
 [       3       1       1       4       1    4474       7       2      11       2]   99.290% 	[class: 5]
 [      10       2       3       0       4       6    4919       0       7       0]   99.354% 	[class: 6]
 [       3      12      15       4       7       0       0    5121       5       8]   98.957% 	[class: 7]
 [       2       7       6       8       4       9       5       4    4788       9]   98.885% 	[class: 8]
 [       3       2       0       5      16       6       1      20      10    4925]]  98.737% 	[class: 9]
 + average row correct: 99.245830774307% 
 + average rowUcol correct (VOC measure): 98.505631089211% 
 + global correct: 99.25%
{
  averageUnionValid : 0.98505631089211
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
Out[25]:
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9925
  _prediction : FloatTensor - size: 10
  averageValid : 0.99245830774307
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     973       0       3       0       0       6       4       1       1       3]   98.184% 	[class: 0]
 [       0    1058       1       0       0       0       3       1       1       0]   99.436% 	[class: 1]
 [       1       2     980       1       1       0       1       4       0       0]   98.990% 	[class: 2]
 [       0       0       2    1024       0       4       0       0       0       0]   99.417% 	[class: 3]
 [       0       5       0       0     960       1       4       3       2       8]   97.660% 	[class: 4]
 [       1       0       0       3       0     900       9       0       1       1]   98.361% 	[class: 5]
 [       0       0       0       0       0       2     965       0       0       0]   99.793% 	[class: 6]
 [       0       3       0       0       0       0       0    1084       1       2]   99.450% 	[class: 7]
 [       2       0       1       4       0       5       9       0     984       4]   97.522% 	[class: 8]
 [       3       0       0       2       9       3       0       3       2     939]]  97.711% 	[class: 9]
 + average row correct: 98.652373552322% 
 + average rowUcol correct (VOC measure): 97.341857552528% 
 + global correct: 98.67%
{
  averageUnionValid : 0.97341857552528
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9867
  _prediction : FloatTensor - size: 10
  averageValid : 0.98652373552322
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 9 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4920       0       1       0       1       0       6       1       2       1]   99.757% 	[class: 0]
 [       0    5664       2       0       0       0       1       9       2       0]   99.753% 	[class: 1]
 [       2       4    4941       3       2       1       0       9       5       1]   99.457% 	[class: 2]
 [       1       0       9    5068       0       7       0       6       8       2]   99.353% 	[class: 3]
 [       1       1       3       0    4833       0       6       2       1      12]   99.465% 	[class: 4]
 [       1       1       1       5       0    4484       4       1       8       1]   99.512% 	[class: 5]
 [       7       0       2       0       3       3    4932       0       4       0]   99.616% 	[class: 6]
 [       0       8      12       2       1       1       0    5139       3       9]   99.304% 	[class: 7]
 [       2       4       8       5       2       8       3       1    4804       5]   99.215% 	[class: 8]
 [       4       2       0       1      10       5       0      14       4    4948]]  99.198% 	[class: 9]
 + average row correct: 99.463024735451% 
 + average rowUcol correct (VOC measure): 98.933103680611% 
 + global correct: 99.466%
{
  averageUnionValid : 0.98933103680611
  _targ_idx : LongTensor - empty
Out[25]:
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.99466
  _prediction : FloatTensor - size: 10
  averageValid : 0.99463024735451
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     981       0       1       1       0       1       3       1       1       2]   98.991% 	[class: 0]
 [       0    1057       2       0       0       0       3       1       1       0]   99.342% 	[class: 1]
 [       1       2     983       2       0       0       1       1       0       0]   99.293% 	[class: 2]
 [       0       0       3    1022       0       3       0       0       2       0]   99.223% 	[class: 3]
 [       0       2       0       0     967       0       2       4       1       7]   98.372% 	[class: 4]
 [       1       0       1       3       0     900       8       0       1       1]   98.361% 	[class: 5]
 [       0       0       0       0       0       1     966       0       0       0]   99.897% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       2       0       1       2       0       3       7       0     992       2]   98.315% 	[class: 8]
 [       3       0       0       4       8       2       0       6       3     935]]  97.294% 	[class: 9]
 + average row correct: 98.881324529648% 
 + average rowUcol correct (VOC measure): 97.800331115723% 
 + global correct: 98.9%
{
  averageUnionValid : 0.97800331115723
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.989
  _prediction : FloatTensor - size: 10
  averageValid : 0.98881324529648
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	
Out[25]:

	
	
on training set:	
online epoch # 10 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4925       0       0       0       1       0       3       0       2       1]   99.858% 	[class: 0]
 [       0    5664       1       0       0       0       0       9       4       0]   99.753% 	[class: 1]
 [       2       2    4948       1       2       0       2       7       4       0]   99.597% 	[class: 2]
 [       1       1       4    5077       0       6       0       5       5       2]   99.530% 	[class: 3]
 [       1       1       3       0    4839       0       5       2       1       7]   99.588% 	[class: 4]
 [       1       1       1       4       0    4487       4       1       6       1]   99.578% 	[class: 5]
 [       7       0       0       0       4       3    4934       0       3       0]   99.657% 	[class: 6]
 [       0       8      13       2       1       0       0    5145       1       5]   99.420% 	[class: 7]
 [       1       5       5       3       1       7       3       0    4815       2]   99.442% 	[class: 8]
 [       3       1       0       1       6       2       0      12       4    4959]]  99.419% 	[class: 9]
 + average row correct: 99.584307670593% 
 + average rowUcol correct (VOC measure): 99.173460006714% 
 + global correct: 99.586%
{
  averageUnionValid : 0.99173460006714
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.99586
  _prediction : FloatTensor - size: 10
  averageValid : 0.99584307670593
}
Out[25]:
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     982       0       1       1       0       1       2       1       1       2]   99.092% 	[class: 0]
 [       0    1057       2       0       0       0       3       1       1       0]   99.342% 	[class: 1]
 [       1       2     983       2       0       0       1       1       0       0]   99.293% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       1     967       0       1       4       1       7]   98.372% 	[class: 4]
 [       1       0       1       4       0     900       8       0       1       0]   98.361% 	[class: 5]
 [       0       0       0       0       0       1     966       0       0       0]   99.897% 	[class: 6]
 [       0       2       0       1       0       0       0    1086       0       1]   99.633% 	[class: 7]
 [       2       0       1       2       0       3       7       1     991       2]   98.216% 	[class: 8]
 [       3       0       0       6       8       3       0       6       3     932]]  96.982% 	[class: 9]
 + average row correct: 98.850821852684% 
 + average rowUcol correct (VOC measure): 97.743374109268% 
 + global correct: 98.87%
{
  
Out[25]:
averageUnionValid : 0.97743374109268
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9887
  _prediction : FloatTensor - size: 10
  averageValid : 0.98850821852684
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 11 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4925       0       1       0       1       0       3       0       2       0]   99.858% 	[class: 0]
 [       0    5666       0       0       0       0       1       9       2       0]   99.789% 	[class: 1]
 [       1       3    4952       1       1       0       0       6       3       1]   99.678% 	[class: 2]
 [       1       1       3    5086       0       3       0       2       3       2]   99.706% 	[class: 3]
 [       1       1       3       0    4844       0       3       0       0       7]   99.691% 	[class: 4]
 [       0       1       1       5       0    4492       3       0       3       1]   99.689% 	[class: 5]
 [       5       0       1       0       4       3    4935       0       3       0]   99.677% 	[class: 6]
 [       0       7       8       0       0       0       0    5156       0       4]   99.633% 	[class: 7]
 [       0       3       4       2       0       6       2       0    4823       2]   99.608% 	[class: 8]
 [       2       1       0       0       7       1       0       9       4    4964]]  99.519% 	[class: 9]
 + average row correct: 99.684733748436% 
 + average rowUcol correct (VOC measure): 99.373205900192% 
 + global correct: 99.686%
{
  averageUnionValid : 0.99373205900192
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
Out[25]:
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.99686
  _prediction : FloatTensor - size: 10
  averageValid : 0.99684733748436
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       1       0       1       0       1       1       2]   99.294% 	[class: 0]
 [       0    1057       2       0       0       0       3       1       1       0]   99.342% 	[class: 1]
 [       1       2     982       2       0       0       1       2       0       0]   99.192% 	[class: 2]
 [       0       0       2    1024       0       2       0       0       2       0]   99.417% 	[class: 3]
 [       0       2       0       0     968       0       1       4       1       7]   98.474% 	[class: 4]
 [       1       0       1       4       1     898       8       0       1       1]   98.142% 	[class: 5]
 [       0       0       0       0       0       1     966       0       0       0]   99.897% 	[class: 6]
 [       0       0       0       1       0       0       0    1089       0       0]   99.908% 	[class: 7]
 [       3       0       1       2       0       3       6       1     991       2]   98.216% 	[class: 8]
 [       3       0       0       5       8       1       0       6       3     935]]  97.294% 	[class: 9]
 + average row correct: 98.917667269707% 
 + average rowUcol correct (VOC measure): 97.879247665405% 
 + global correct: 98.94%
{
  averageUnionValid : 0.97879247665405
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9894
  _prediction : FloatTensor - size: 10
  averageValid : 0.98917667269707
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 12 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4928       0       1       0       0       0       1       0       2       0]   99.919% 	[class: 0]
 [       0    5667       0       0       0       0       1       8       2       0]   99.806% 	[class: 1]
 [       0       2    4958       0       0       0       1       4       2       1]   99.799% 	[class: 2]
 [       0       1       1    5089       0       3       0       2       3       2]   99.765% 	[class: 3]
 [       1       1       3       0    4847       0       3       0       0       4]   99.753% 	[class: 4]
 [       0       1       1       4       0    4494       3       0       2       1]   99.734% 	[class: 5]
 [       4       0       1       0       5       2    4937       0       2       0]   99.717% 	[class: 6]
 [       0       7       7       0       2       0       0    5155       0       4]   99.614% 	[class: 7]
 [       0       3       2       2       0       4       2       0    4828       1]   99.711% 	[class: 8]
 [       2       1       0       0       6       2       0       8       3    4966]]  99.559% 	[class: 9]
 + average row correct: 99.737591147423% 
 + average rowUcol correct (VOC measure): 99.477725625038% 
 + global correct: 99.738%
{
  averageUnionValid : 0.99477725625038
  _targ_idx : LongTensor - empty
Out[25]:
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.99738
  _prediction : FloatTensor - size: 10
  averageValid : 0.99737591147423
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1058       1       0       0       0       3       1       1       0]   99.436% 	[class: 1]
 [       1       2     982       2       0       0       1       2       0       0]   99.192% 	[class: 2]
 [       0       0       2    1024       0       2       0       0       2       0]   99.417% 	[class: 3]
 [       0       2       0       0     968       0       1       4       1       7]   98.474% 	[class: 4]
 [       1       0       0       4       2     897       8       0       2       1]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       0       0       1       0       0       0    1089       0       0]   99.908% 	[class: 7]
 [       3       0       1       2       0       1       2       1     996       3]   98.712% 	[class: 8]
 [       3       0       0       4       7       1       0       6       3     937]]  97.503% 	[class: 9]
 + average row correct: 98.965820074081% 
 + average rowUcol correct (VOC measure): 97.977915406227% 
 + global correct: 98.99%
{
  averageUnionValid : 0.97977915406227
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
  
Out[25]:
    4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9899
  _prediction : FloatTensor - size: 10
  averageValid : 0.98965820074081
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 13 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5667       0       0       0       0       1       8       2       0]   99.806% 	[class: 1]
 [       0       2    4958       0       0       0       2       4       2       0]   99.799% 	[class: 2]
 [       0       1       1    5090       0       2       0       2       3       2]   99.784% 	[class: 3]
 [       1       1       2       0    4846       0       3       2       0       4]   99.732% 	[class: 4]
 [       0       1       1       4       0    4496       3       0       0       1]   99.778% 	[class: 5]
 [       4       0       1       0       4       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       7       7       0       1       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       3       2       2       0       4       2       0    4828       1]   99.711% 	[class: 8]
 [       2       1       0       0       5       2       0       8       2    4968]]  99.599% 	[class: 9]
 + average row correct: 99.757805466652% 
 + average rowUcol correct (VOC measure): 99.518758058548% 
 + global correct: 99.758%
{
  averageUnionValid : 0.99518758058548
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
Out[25]:
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.99758
  _prediction : FloatTensor - size: 10
  averageValid : 0.99757805466652
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     980       2       1       0       1       3       0       0]   98.990% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     969       0       1       3       1       7]   98.576% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       1       0       0       0    1086       0       1]   99.633% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       4       7       1       0       4       3     939]]  97.711% 	[class: 9]
 + average row correct: 98.948255777359% 
 + average rowUcol correct (VOC measure): 97.938922047615% 
 + global correct: 98.97%
{
  averageUnionValid : 0.97938922047615
  _targ_idx : LongTensor - empty
Out[25]:
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9897
  _prediction : FloatTensor - size: 10
  averageValid : 0.98948255777359
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 14 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       1       2    4958       0       0       0       2       4       1       0]   99.799% 	[class: 2]
 [       0       1       1    5090       0       2       0       2       3       2]   99.784% 	[class: 3]
 [       1       1       1       0    4847       0       3       2       0       4]   99.753% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       4       1    4940       0       2       0]   99.778% 	[class: 6]
 [       0       5       7       0       1       0       0    5160       0       2]   99.710% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4829       1]   99.732% 	[class: 8]
 [       2       1       0       0       5       2       0       7       2    4969]]  99.619% 	[class: 9]
 + average row correct: 99.775559902191% 
 + average rowUcol correct (VOC measure): 99.553617835045% 
 + global correct: 99.776%
{
  averageUnionValid : 0.99553617835045
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.99776
  _prediction : FloatTensor - size: 10
  averageValid : 0.99775559902191
}
Out[25]:
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     980       2       1       0       1       3       0       0]   98.990% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1086       0       2]   99.633% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       2       7       1       0       3       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.989645838737% 
 + average rowUcol correct (VOC measure): 98.016051650047% 
 + global correct: 99.01%
{
  averageUnionValid : 0.98016051650047
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
Out[25]:
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9901
  _prediction : FloatTensor - size: 10
  averageValid : 0.98989645838737
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
Out[25]:
	
on training set:	
online epoch # 15 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5091       0       2       0       1       4       2]   99.804% 	[class: 3]
 [       1       0       1       0    4847       0       3       3       0       4]   99.753% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5157       0       3]   99.652% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.771655797958% 
 + average rowUcol correct (VOC measure): 99.545434117317% 
 + global correct: 99.772%
{
  averageUnionValid : 0.99545434117317
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
   
Out[25]:
   1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.99772
  _prediction : FloatTensor - size: 10
  averageValid : 0.99771655797958
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     980       2       1       0       1       3       0       0]   98.990% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1086       0       2]   99.633% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       3       3     943]]  98.127% 	[class: 9]
 + average row correct: 99.000052213669% 
 + average rowUcol correct (VOC measure): 98.035752177238% 
 + global correct: 99.02%
{
  averageUnionValid : 0.98035752177238
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.99000052213669
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 16 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       1       0    4848       0       3       2       0       4]   99.774% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5157       0       3]   99.652% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.775674343109% 
 + average rowUcol correct (VOC measure): 99.553405642509% 
 + global correct: 99.776%
{
  averageUnionValid : 0.99553405642509
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
Out[25]:
  totalValid : 0.99776
  _prediction : FloatTensor - size: 10
  averageValid : 0.99775674343109
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     980       2       1       0       1       3       0       0]   98.990% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       3       3     943]]  98.127% 	[class: 9]
 + average row correct: 99.009226560593% 
 + average rowUcol correct (VOC measure): 98.054683208466% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054683208466
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99009226560593
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 17 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       1       0    4848       0       3       2       0       4]   99.774% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.777606725693% 
 + average rowUcol correct (VOC measure): 99.557319283485% 
 + global correct: 99.778%
{
  averageUnionValid : 0.99557319283485
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
Out[25]:
  totalValid : 0.99778
  _prediction : FloatTensor - size: 10
  averageValid : 0.99777606725693
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     980       2       1       0       1       3       0       0]   98.990% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.998820185661% 
 + average rowUcol correct (VOC measure): 98.035499453545% 
 + global correct: 99.02%
{
  averageUnionValid : 0.98035499453545
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
Out[25]:
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.98998820185661
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
Out[25]:
	
on training set:	
online epoch # 18 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
Out[25]:
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
Out[25]:
	
on training set:	
online epoch # 19 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
Out[25]:
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  
Out[25]:
_target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 20 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
Out[25]:
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
Out[25]:
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 21 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
Out[25]:
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
Out[25]:
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	
Out[25]:

	
	
on training set:	
online epoch # 22 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  
Out[25]:
nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
     
Out[25]:
 6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}


	
Out[25]:
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 23 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
 
Out[25]:
 averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
    
Out[25]:
  6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
Out[25]:
	
on training set:	
online epoch # 24 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
Out[25]:
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
Out[25]:
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 25 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
Out[25]:
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 26 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
Out[25]:
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  
Out[25]:
totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 27 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
Out[25]:
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
Out[25]:
  averageValid : 0.99008921384811
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 28 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
Out[25]:
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
Out[25]:
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
Out[25]:
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 29 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1023       0       3       0       0       2       0]   99.320% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 99.008921384811% 
 + average rowUcol correct (VOC measure): 98.054509162903% 
 + global correct: 99.03%
{
  averageUnionValid : 0.98054509162903
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
Out[25]:
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9903
  _prediction : FloatTensor - size: 10
  averageValid : 0.99008921384811
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
Out[25]:
	
on training set:	
online epoch # 30 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
Out[25]:
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
Out[25]:
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 31 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
Out[25]:
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 32 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
Out[25]:
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
Out[25]:
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 33 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
Out[25]:
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
Out[25]:
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 34 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
Out[25]:
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 35 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
Out[25]:
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 36 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
 
Out[25]:
 unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
   
Out[25]:
   5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}


	
No Progress Iter: 0	
Out[25]:
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 37 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
Out[25]:
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
Out[25]:
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 38 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
Out[25]:
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 39 [batchSize = 100]	
Out[25]:
	
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
  
Out[25]:
    7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}
Out[25]:

	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
	
on training set:	
online epoch # 40 [batchSize = 100]	
Out[25]:
	
Out[25]:
ConfusionMatrix:
[[    4929       0       2       0       0       0       0       0       1       0]   99.939% 	[class: 0]
 [       0    5669       0       0       0       0       1       7       1       0]   99.841% 	[class: 1]
 [       0       2    4959       0       0       0       2       4       1       0]   99.819% 	[class: 2]
 [       0       0       1    5092       0       2       0       1       3       2]   99.824% 	[class: 3]
 [       1       0       0       0    4849       0       3       2       0       4]   99.794% 	[class: 4]
 [       0       1       1       4       0    4497       3       0       0       0]   99.800% 	[class: 5]
 [       3       0       1       0       5       1    4939       0       2       0]   99.758% 	[class: 6]
 [       0       6       7       0       2       0       0    5158       0       2]   99.671% 	[class: 7]
 [       0       2       2       2       0       4       2       0    4828       2]   99.711% 	[class: 8]
 [       2       1       0       0       4       2       0       7       2    4970]]  99.639% 	[class: 9]
 + average row correct: 99.779664874077% 
 + average rowUcol correct (VOC measure): 99.561370015144% 
 + global correct: 99.78%
{
  averageUnionValid : 0.99561370015144
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9978
  _prediction : FloatTensor - size: 10
  averageValid : 0.99779664874077
}
on testing Set:	
Out[25]:
	
ConfusionMatrix:
[[     984       0       1       0       0       1       0       1       1       3]   99.294% 	[class: 0]
 [       0    1060       1       0       0       0       2       1       0       0]   99.624% 	[class: 1]
 [       1       2     981       2       1       0       1       2       0       0]   99.091% 	[class: 2]
 [       0       0       2    1022       0       3       0       0       3       0]   99.223% 	[class: 3]
 [       0       2       0       0     970       0       1       2       1       7]   98.678% 	[class: 4]
 [       1       0       0       3       2     897       8       0       2       2]   98.033% 	[class: 5]
 [       0       0       0       0       1       1     964       0       1       0]   99.690% 	[class: 6]
 [       0       2       0       0       0       0       0    1087       0       1]   99.725% 	[class: 7]
 [       3       0       1       2       0       1       2       1     995       4]   98.612% 	[class: 8]
 [       3       0       0       1       7       1       0       4       3     942]]  98.023% 	[class: 9]
 + average row correct: 98.99921298027% 
 + average rowUcol correct (VOC measure): 98.03530216217% 
 + global correct: 99.02%
{
  averageUnionValid : 0.9803530216217
  _targ_idx : LongTensor - empty
  valids : FloatTensor - size: 10
  classes : 
    {
      1 : 0
      2 : 1
      3 : 2
      4 : 3
      5 : 4
      6 : 5
      7 : 6
      8 : 7
      9 : 8
      10 : 9
    }
  _target : FloatTensor - empty
  mat : FloatTensor - size: 10x10
  _pred_idx : LongTensor - size: 1
  _max : FloatTensor - size: 1
Out[25]:
  unionvalids : FloatTensor - size: 10
  nclasses : 10
  totalValid : 0.9902
  _prediction : FloatTensor - size: 10
  averageValid : 0.9899921298027
}


	
No Progress Iter: 0	
Backward Progress Iter: 0	


	
-- Update Whetlab scientist:update(whetlabJob,perf) -- log done log:close() -- save model: torch.save('classifier.th', model)