In [26]:
using Lattices
In [ ]:
sq=MakeLattice("Square",5);
In [ ]:
PlotNeighbors(sq)
In [ ]:
ch=MakeLattice("Chain",3)
In [ ]:
hc=MakeLattice("Honeycomb",4);
In [ ]:
PlotNeighbors(hc)
In [ ]:
ck=MakeLattice("Checkerboard",4);
In [ ]:
PlotNeighbors(ck)
In [2]:
kg=MakeLattice("Kagome",5);
In [22]:
PlotNeighbors(kg)
In [23]:
function armod(x,y)
return mod(x-1+y,y)+1
end
Out[23]:
In [59]:
l=3;
N=l^3;
d=convert(Int8,3);
nnei=6;
neigh=Array{Int16}(N,6);
a=[[1 0 0 ]
[0 1 0]
[0 0 1]];
unit=[0 0 0];
X=MakeX(a,unit,l,d);
neigh[:,1]=armod(X[:,1]+2,l)+l*X[:,2]+X[:,3]*l^2;
neigh[:,2]=armod(X[:,1],l)+l*X[:,2]+X[:,3]*l^2;
neigh[:,3]=X[:,1]+1+l*mod(X[:,2]+2,l)+X[:,3]*l^2;
neigh[:,4]=X[:,1]+1+l*mod(X[:,2],l)+X[:,3]*l^2
neigh[:,5]=X[:,1]+1+l*X[:,2]+mod(X[:,3]+2,l)*l^2;
neigh[:,6]=X[:,1]+1+l*X[:,2]+mod(X[:,3],l)*l^2;
In [ ]:
In [36]:
using PyPlot
scatter3D(X[:,1],X[:,2],X[:,3])
Out[36]:
In [65]:
for i in 1:N
for j in 1:nnei
xx=[X[i,1], X[neigh[i,j],1] ]
yx=[X[i,2], X[neigh[i,j],2] ]
zx=[X[i,3], X[neigh[i,j],3] ]
plot3D(xx,yx,zx)
end
end
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: