LeNet Lab Solution

Source: Yan LeCun

Load Data

Load the MNIST data, which comes pre-loaded with TensorFlow.

You do not need to modify this section.


In [1]:
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("./MNIST_data/", reshape=False)
X_train, y_train           = mnist.train.images, mnist.train.labels
X_validation, y_validation = mnist.validation.images, mnist.validation.labels
X_test, y_test             = mnist.test.images, mnist.test.labels

assert(len(X_train) == len(y_train))
assert(len(X_validation) == len(y_validation))
assert(len(X_test) == len(y_test))

print()
print("Image Shape: {}".format(X_train[0].shape))
print()
print("Training Set:   {} samples".format(len(X_train)))
print("Validation Set: {} samples".format(len(X_validation)))
print("Test Set:       {} samples".format(len(X_test)))


---------------------------------------------------------------------------
TimeoutError                              Traceback (most recent call last)
C:\Users\aksha\Anaconda3\lib\urllib\request.py in do_open(self, http_class, req, **http_conn_args)
   1253             try:
-> 1254                 h.request(req.get_method(), req.selector, req.data, headers)
   1255             except OSError as err: # timeout error

C:\Users\aksha\Anaconda3\lib\http\client.py in request(self, method, url, body, headers)
   1105         """Send a complete request to the server."""
-> 1106         self._send_request(method, url, body, headers)
   1107 

C:\Users\aksha\Anaconda3\lib\http\client.py in _send_request(self, method, url, body, headers)
   1150             body = _encode(body, 'body')
-> 1151         self.endheaders(body)
   1152 

C:\Users\aksha\Anaconda3\lib\http\client.py in endheaders(self, message_body)
   1101             raise CannotSendHeader()
-> 1102         self._send_output(message_body)
   1103 

C:\Users\aksha\Anaconda3\lib\http\client.py in _send_output(self, message_body)
    933 
--> 934         self.send(msg)
    935         if message_body is not None:

C:\Users\aksha\Anaconda3\lib\http\client.py in send(self, data)
    876             if self.auto_open:
--> 877                 self.connect()
    878             else:

C:\Users\aksha\Anaconda3\lib\http\client.py in connect(self)
    848         self.sock = self._create_connection(
--> 849             (self.host,self.port), self.timeout, self.source_address)
    850         self.sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)

C:\Users\aksha\Anaconda3\lib\socket.py in create_connection(address, timeout, source_address)
    710     if err is not None:
--> 711         raise err
    712     else:

C:\Users\aksha\Anaconda3\lib\socket.py in create_connection(address, timeout, source_address)
    701                 sock.bind(source_address)
--> 702             sock.connect(sa)
    703             return sock

TimeoutError: [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond

During handling of the above exception, another exception occurred:

URLError                                  Traceback (most recent call last)
<ipython-input-1-68c12bb7db68> in <module>()
      1 from tensorflow.examples.tutorials.mnist import input_data
      2 
----> 3 mnist = input_data.read_data_sets("./MNIST_data/", reshape=False)
      4 X_train, y_train           = mnist.train.images, mnist.train.labels
      5 X_validation, y_validation = mnist.validation.images, mnist.validation.labels

C:\Users\aksha\Anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py in read_data_sets(train_dir, fake_data, one_hot, dtype, reshape, validation_size)
    209 
    210   local_file = base.maybe_download(TRAIN_IMAGES, train_dir,
--> 211                                    SOURCE_URL + TRAIN_IMAGES)
    212   with open(local_file, 'rb') as f:
    213     train_images = extract_images(f)

C:\Users\aksha\Anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\base.py in maybe_download(filename, work_directory, source_url)
    206   filepath = os.path.join(work_directory, filename)
    207   if not gfile.Exists(filepath):
--> 208     temp_file_name, _ = urlretrieve_with_retry(source_url)
    209     gfile.Copy(temp_file_name, filepath)
    210     with gfile.GFile(filepath) as f:

C:\Users\aksha\Anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\base.py in wrapped_fn(*args, **kwargs)
    163       for delay in delays():
    164         try:
--> 165           return fn(*args, **kwargs)
    166         except Exception as e:  # pylint: disable=broad-except)
    167           if is_retriable is None:

C:\Users\aksha\Anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\base.py in urlretrieve_with_retry(url, filename)
    188 @retry(initial_delay=1.0, max_delay=16.0, is_retriable=_is_retriable)
    189 def urlretrieve_with_retry(url, filename=None):
--> 190   return urllib.request.urlretrieve(url, filename)
    191 
    192 

C:\Users\aksha\Anaconda3\lib\urllib\request.py in urlretrieve(url, filename, reporthook, data)
    186     url_type, path = splittype(url)
    187 
--> 188     with contextlib.closing(urlopen(url, data)) as fp:
    189         headers = fp.info()
    190 

C:\Users\aksha\Anaconda3\lib\urllib\request.py in urlopen(url, data, timeout, cafile, capath, cadefault, context)
    161     else:
    162         opener = _opener
--> 163     return opener.open(url, data, timeout)
    164 
    165 def install_opener(opener):

C:\Users\aksha\Anaconda3\lib\urllib\request.py in open(self, fullurl, data, timeout)
    464             req = meth(req)
    465 
--> 466         response = self._open(req, data)
    467 
    468         # post-process response

C:\Users\aksha\Anaconda3\lib\urllib\request.py in _open(self, req, data)
    482         protocol = req.type
    483         result = self._call_chain(self.handle_open, protocol, protocol +
--> 484                                   '_open', req)
    485         if result:
    486             return result

C:\Users\aksha\Anaconda3\lib\urllib\request.py in _call_chain(self, chain, kind, meth_name, *args)
    442         for handler in handlers:
    443             func = getattr(handler, meth_name)
--> 444             result = func(*args)
    445             if result is not None:
    446                 return result

C:\Users\aksha\Anaconda3\lib\urllib\request.py in http_open(self, req)
   1280 
   1281     def http_open(self, req):
-> 1282         return self.do_open(http.client.HTTPConnection, req)
   1283 
   1284     http_request = AbstractHTTPHandler.do_request_

C:\Users\aksha\Anaconda3\lib\urllib\request.py in do_open(self, http_class, req, **http_conn_args)
   1254                 h.request(req.get_method(), req.selector, req.data, headers)
   1255             except OSError as err: # timeout error
-> 1256                 raise URLError(err)
   1257             r = h.getresponse()
   1258         except:

URLError: <urlopen error [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond>

The MNIST data that TensorFlow pre-loads comes as 28x28x1 images.

However, the LeNet architecture only accepts 32x32xC images, where C is the number of color channels.

In order to reformat the MNIST data into a shape that LeNet will accept, we pad the data with two rows of zeros on the top and bottom, and two columns of zeros on the left and right (28+2+2 = 32).

You do not need to modify this section.


In [ ]:
import numpy as np

# Pad images with 0s
X_train      = np.pad(X_train, ((0,0),(2,2),(2,2),(0,0)), 'constant')
X_validation = np.pad(X_validation, ((0,0),(2,2),(2,2),(0,0)), 'constant')
X_test       = np.pad(X_test, ((0,0),(2,2),(2,2),(0,0)), 'constant')
    
print("Updated Image Shape: {}".format(X_train[0].shape))

Visualize Data

View a sample from the dataset.

You do not need to modify this section.


In [ ]:
import random
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

index = random.randint(0, len(X_train))
image = X_train[index].squeeze()

plt.figure(figsize=(1,1))
plt.imshow(image, cmap="gray")
print(y_train[index])

Preprocess Data

Shuffle the training data.

You do not need to modify this section.


In [ ]:
from sklearn.utils import shuffle

X_train, y_train = shuffle(X_train, y_train)

Setup TensorFlow

The EPOCH and BATCH_SIZE values affect the training speed and model accuracy.

You do not need to modify this section.


In [ ]:
import tensorflow as tf

EPOCHS = 10
BATCH_SIZE = 128

SOLUTION: Implement LeNet-5

Implement the LeNet-5 neural network architecture.

This is the only cell you need to edit.

Input

The LeNet architecture accepts a 32x32xC image as input, where C is the number of color channels. Since MNIST images are grayscale, C is 1 in this case.

Architecture

Layer 1: Convolutional. The output shape should be 28x28x6.

Activation. Your choice of activation function.

Pooling. The output shape should be 14x14x6.

Layer 2: Convolutional. The output shape should be 10x10x16.

Activation. Your choice of activation function.

Pooling. The output shape should be 5x5x16.

Flatten. Flatten the output shape of the final pooling layer such that it's 1D instead of 3D. The easiest way to do is by using tf.contrib.layers.flatten, which is already imported for you.

Layer 3: Fully Connected. This should have 120 outputs.

Activation. Your choice of activation function.

Layer 4: Fully Connected. This should have 84 outputs.

Activation. Your choice of activation function.

Layer 5: Fully Connected (Logits). This should have 10 outputs.

Output

Return the result of the 2nd fully connected layer.


In [ ]:
from tensorflow.contrib.layers import flatten

def LeNet(x):    
    # Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer
    mu = 0
    sigma = 0.1
    
    # SOLUTION: Layer 1: Convolutional. Input = 32x32x1. Output = 28x28x6.
    conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 1, 6), mean = mu, stddev = sigma))
    conv1_b = tf.Variable(tf.zeros(6))
    conv1   = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b

    # SOLUTION: Activation.
    conv1 = tf.nn.relu(conv1)

    # SOLUTION: Pooling. Input = 28x28x6. Output = 14x14x6.
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')

    # SOLUTION: Layer 2: Convolutional. Output = 10x10x16.
    conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = mu, stddev = sigma))
    conv2_b = tf.Variable(tf.zeros(16))
    conv2   = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b
    
    # SOLUTION: Activation.
    conv2 = tf.nn.relu(conv2)

    # SOLUTION: Pooling. Input = 10x10x16. Output = 5x5x16.
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')

    # SOLUTION: Flatten. Input = 5x5x16. Output = 400.
    fc0   = flatten(conv2)
    
    # SOLUTION: Layer 3: Fully Connected. Input = 400. Output = 120.
    fc1_W = tf.Variable(tf.truncated_normal(shape=(400, 120), mean = mu, stddev = sigma))
    fc1_b = tf.Variable(tf.zeros(120))
    fc1   = tf.matmul(fc0, fc1_W) + fc1_b
    
    # SOLUTION: Activation.
    fc1    = tf.nn.relu(fc1)

    # SOLUTION: Layer 4: Fully Connected. Input = 120. Output = 84.
    fc2_W  = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = mu, stddev = sigma))
    fc2_b  = tf.Variable(tf.zeros(84))
    fc2    = tf.matmul(fc1, fc2_W) + fc2_b
    
    # SOLUTION: Activation.
    fc2    = tf.nn.relu(fc2)

    # SOLUTION: Layer 5: Fully Connected. Input = 84. Output = 10.
    fc3_W  = tf.Variable(tf.truncated_normal(shape=(84, 10), mean = mu, stddev = sigma))
    fc3_b  = tf.Variable(tf.zeros(10))
    logits = tf.matmul(fc2, fc3_W) + fc3_b
    
    return logits

Features and Labels

Train LeNet to classify MNIST data.

x is a placeholder for a batch of input images. y is a placeholder for a batch of output labels.

You do not need to modify this section.


In [ ]:
x = tf.placeholder(tf.float32, (None, 32, 32, 1))
y = tf.placeholder(tf.int32, (None))
one_hot_y = tf.one_hot(y, 10)

Training Pipeline

Create a training pipeline that uses the model to classify MNIST data.

You do not need to modify this section.


In [ ]:
rate = 0.001

logits = LeNet(x)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, one_hot_y)
loss_operation = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate = rate)
training_operation = optimizer.minimize(loss_operation)

Model Evaluation

Evaluate how well the loss and accuracy of the model for a given dataset.

You do not need to modify this section.


In [ ]:
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1))
accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()

def evaluate(X_data, y_data):
    num_examples = len(X_data)
    total_accuracy = 0
    sess = tf.get_default_session()
    for offset in range(0, num_examples, BATCH_SIZE):
        batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE]
        accuracy = sess.run(accuracy_operation, feed_dict={x: batch_x, y: batch_y})
        total_accuracy += (accuracy * len(batch_x))
    return total_accuracy / num_examples

Train the Model

Run the training data through the training pipeline to train the model.

Before each epoch, shuffle the training set.

After each epoch, measure the loss and accuracy of the validation set.

Save the model after training.

You do not need to modify this section.


In [ ]:
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    num_examples = len(X_train)
    
    print("Training...")
    print()
    for i in range(EPOCHS):
        X_train, y_train = shuffle(X_train, y_train)
        for offset in range(0, num_examples, BATCH_SIZE):
            end = offset + BATCH_SIZE
            batch_x, batch_y = X_train[offset:end], y_train[offset:end]
            sess.run(training_operation, feed_dict={x: batch_x, y: batch_y})
            
        validation_accuracy = evaluate(X_validation, y_validation)
        print("EPOCH {} ...".format(i+1))
        print("Validation Accuracy = {:.3f}".format(validation_accuracy))
        print()
        
    saver.save(sess, './lenet')
    print("Model saved")

Evaluate the Model

Once you are completely satisfied with your model, evaluate the performance of the model on the test set.

Be sure to only do this once!

If you were to measure the performance of your trained model on the test set, then improve your model, and then measure the performance of your model on the test set again, that would invalidate your test results. You wouldn't get a true measure of how well your model would perform against real data.

You do not need to modify this section.


In [ ]:
with tf.Session() as sess:
    saver.restore(sess, tf.train.latest_checkpoint('.'))

    test_accuracy = evaluate(X_test, y_test)
    print("Test Accuracy = {:.3f}".format(test_accuracy))