In [1]:
import os
from os import listdir
from os.path import isfile, join
import numpy as np
from matplotlib import pyplot as plt
import cv2
%matplotlib inline
import scipy.misc
In [2]:
mask = plt.imread('/home/arvind/mask.jpg')
mypath = '/home/arvind/Desktop/Manatee_dataset/cleaned_data/train/'
files = [f for f in listdir(mypath) if isfile(join(mypath, f))]
In [25]:
img = plt.imread(mypath+'../../sketches_train/U3821.jpg')
_img = np.invert(img)
In [27]:
plt.imshow(img)
print files[0]
In [5]:
sizes = {(224, 224),(259, 594)}
masks = {}
for filen in files:
img = plt.imread(mypath + filen)
img = np.invert(img)
img[img<100] = 0
img[img>100] = 1
#idx = np.where(img)[0:2] # Drop the color when finding edges
#box = map(min,idx)[::-1] + map(max,idx)[::-1]
#region = img[box[0]:0,box[1]:box[2]]
if img.shape in sizes:
if img.shape not in masks:
masks[img.shape] = img.astype('float32')
masks[img.shape] = masks[img.shape] + img
In [6]:
masks.keys()
Out[6]:
In [8]:
img = plt.imread(mypath+files[0])
_img = np.invert(img)
print np.max(masks[(224,224)])
_img[masks[(224,224)]>1500] = 0
#_img[masks[(224,224)]>200] = 0.9
plt.imshow(_img)
Out[8]:
In [9]:
plt.imshow(img)
Out[9]:
In [11]:
idx = np.where(img-255)[0:2] # Drop the color when finding edges
box = map(min,idx)[::-1] + map(max,idx)[::-1]
region = img[box[0]:box[3],box[1]:box[2]]
#region_pix = np.asarray(region)
plt.imshow(img)
Out[11]:
In [ ]: