In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

In [2]:
x= np.linspace(0,4*np.pi,10)
x


Out[2]:
array([  0.        ,   1.3962634 ,   2.7925268 ,   4.1887902 ,
         5.58505361,   6.98131701,   8.37758041,   9.77384381,
        11.17010721,  12.56637061])

In [3]:
f=np.sin(x)
f


Out[3]:
array([  0.00000000e+00,   9.84807753e-01,   3.42020143e-01,
        -8.66025404e-01,  -6.42787610e-01,   6.42787610e-01,
         8.66025404e-01,  -3.42020143e-01,  -9.84807753e-01,
        -4.89858720e-16])

In [4]:
plt.plot(x,f,marker='o')
plt.xlabel('x')
plt.ylabel('f(x)');



In [5]:
from scipy.interpolate import interp1d

In [6]:
x=np.linspace(0,4*np.pi,10)
f=np.sin(x)

In [10]:
sin_approx=interp1d(x,f,kind='cubic')

In [11]:
newx=np.linspace(0,4*np.pi,100)
newf=sin_approx(newx)

In [12]:
plt.plot(x,f,marker='o',linestyle='',label='original data')
plt.plot(newx,newf,marker='.',label='interpolated')
plt.legend();
plt.xlabel('x')
plt.ylabel('f(x)');



In [14]:
plt.plot(newx,np.abs(np.sin(newx)-sin_approx(newx)))
plt.xlabel('x')
plt.ylabel('Absolute error');



In [15]:
x=4*np.pi*np.random.rand(15)
f=np.sin(x)

In [16]:
sin_approx=interp1d(x,f,kind='cubic')

In [19]:
newx=np.linspace(np.min(x),np.max(x),100)
newf=sin_approx(newx)

In [20]:
plt.plot(x,f,marker='o',linestyle='',label='original data')
plt.plot(newx,newf,marker='.',label='interpolated');
plt.legend();
plt.xlabel('x')
plt.ylabel('f(x)');



In [21]:
plt.plot(newx,np.abs(np.sin(newx)-sin_approx(newx)))
plt.xlabel('x')
plt.ylabel('Absolute error');



In [ ]: