In [3]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
For this problem you are given a raw dataset in the file decay_osc.npz. This file contains three arrays:
tdata: an array of time valuesydata: an array of y valuesdy: the absolute uncertainties (standard deviations) in yYour job is to fit the following model to this data:
$$ y(t) = A e^{-\lambda t} \cos{\omega t + \delta} $$First, import the data using NumPy and make an appropriately styled error bar plot of the raw data.
In [4]:
def modl(t,A,o,l,d):
return A*np.exp(-1*t)*np.cos(o*t)+d
In [5]:
thetabest,thetacov=opt.curve_fit(modl,tdata,ydata,np.array((6,1,1,0)),dy,absolute_sigma=True)
In [ ]:
assert True # leave this to grade the data import and raw data plot
Now, using curve_fit to fit this model and determine the estimates and uncertainties for the parameters:
curve_fit to get a good fit.absolute_sigma=True.
In [ ]:
# YOUR CODE HERE
raise NotImplementedError()
In [ ]:
assert True # leave this cell for grading the fit; should include a plot and printout of the parameters+errors