In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
For this problem we are going to work with the following model:
$$ y_{model}(x) = a x^2 + b x + c $$The true values of the model parameters are as follows:
In [2]:
a_true = 0.5
b_true = 2.0
c_true = -4.0
First, generate a dataset using this model using these parameters and the following characteristics:
size argument of np.random.normal).After you generate the data, make a plot of the raw data (use points).
In [3]:
xdata=np.linspace(-5,5,30)
dy=2
sigma=np.random.normal(0,dy,30)
ydata=a_true*xdata**2+b_true*xdata+c_true+sigma
In [4]:
assert True # leave this cell for grading the raw data generation and plot
Now fit the model to the dataset to recover estimates for the model's parameters:
In [5]:
def modl(x,a,b,c):
y=a**2+b*x+c
return y
def derivs(theta,x,y,dy):
a=theta[0]
b=theta[1]
c=theta[2]
return (y-a*x**2-b*x-c/dy)
In [6]:
assert True # leave this cell for grading the fit; should include a plot and printout of the parameters+errors
In [9]:
bestfit=opt.leastsq(derivs,np.array((1,2,-5)),args=(xdata,ydata,dy),full_output=True)
thetabest=bestfit[0]
thetacov=bestfit[1]
In [10]:
plt.errorbar(xdata,ydata,dy,fmt='b.')
xfit=np.linspace(-5,5,100)
yfit=thetabest[0]*xfit**2+thetabest[1]*xfit+thetabest[2]
plt.plot(xfit,yfit)
plt.title('Quad Fit')
plt.xlabel('x')
plt.ylabel('y')
Out[10]:
In [ ]: